Введение

1.1.Общая характеристика алмаза

1.2. Общая характеристика графита

2. Промышленные типы месторождений гранита и алмаза

3. Природные и технологические типы алмазосодержащих и графитовых руд

4. Разработка месторождений гранита и алмаза

5. Области применения гранита и алмаза

Заключение

Список используемой литературы.


Введение

Алмазная промышленность нашей страны находится в стадии развития, внедрения новых технологий обработки минералов.

Найденные месторождения алмазов вскрываются лишь процессами эрозии. Для разведчика это означает, что существует множество «слепых» месторождений, не выходящих на поверхность. Об их присутствии можно узнать по обнаруженным локальным магнитным аномалиям, верхняя кромка которых располагается на глубине в сотни, а если повезет – то в десятки метров. (А. Портнов).

Исходя из вышесказанного, я могу судить о перспективности развития алмазной промышленности. Именно поэтому я выбрала тему – «Алмаз и графит: свойства, происхождение и значение».

В своей работе я попыталась проанализировать связь между графитом и алмазом. Для этого сравнила эти вещества с нескольких точек зрения. Я рассмотрела общую характеристику данных минералов, промышленные типы их месторождений, природные и технические типы, разработку месторождений, области применения, значение данных минералов.

Несмотря на то, что графит и алмаз полярные по своим свойствам, они являются полиморфными модификациями одного и того же химического элемента - углерода. Полиморфные модификации, или полиморфы - это вещества, которые имеют одинаковый химический состав, но различную кристаллическую структуру. С началом синтеза искусственных алмазов резко возрос интерес к исследованию и поискам полиморфных модификаций углерода. В настоящее время, кроме алмаза и графита, достоверно установленными можно считать лонсдейлит и чаотит. Первый во всех случаях был найден только в тесном взаимопрорастании с алмазом и поэтому называется еще гексагональным алмазом, а второй встречается в виде пластинок, чередующихся с графитом, но расположенных перпендикулярно его плоскости.


1. Полиморфные модификации углерода: алмаз и графит

Единственный минералообразующий элемент алмаза и графита - это углерод. Углерод (С) - химический элемент IV группы периодической системы химических элементов Д.И.Менделеева, атомный номер - 6, относительная атомная масса - 12,011(1). Углерод устойчив в кислотах и щелочах, окисляется только дихроматом калия или натрия, хлористым железом или алюминием. Углерод имеет два стабильных изотопа С(99,89%) и С(0,11%). Данные изотопного состава углерода показывают, что он бывает разного происхождения: биогенного, небиогенного и метеоритного. Многообразие соединений углерода, объясняющееся способностью его атомов соединяться друг с другом и атомами других элементов различными способами, обусловливает особое положение углерода среди других элементов.

1.1 Общая характеристика алмаза

При слове «алмаз» сразу же вспоминаются тайные истории, повествующие о поисках сокровищ. Когда-то люди, охотившиеся за алмазами, и не подозревали, что предметом их страсти является кристаллический углерод, который образует сажу, копоть и уголь. Впервые это доказал Лавуазье. Он поставил опыт по сжиганию алмаза, используя собранную специально для этой цели зажигательную машину. Оказалось, алмаз сгорает на воздухе при температуре около 850-1000*С, не оставляя твердого остатка, как и обычный уголь, а в струе чистого кислорода сгорает при температуре 720-800*С. При нагревании до 2000-3000*С без доступа кислорода он переходит в графит (это объясняется тем, что гомеополярные связи между атомами углерода в алмазе очень прочны, что обусловливает очень высокую температуру плавления.

Алмаз - бесцветное, прозрачное кристаллическое вещество, чрезвычайно сильно преломляющее лучи света.

Атомы углерода в алмазе находятся в состоянии sp3-гибридизации. В возбужденном состоянии происходит распаривание валентных электронов в атомах углерода и образование четырёх неспаренных электронов.

Каждый атом углерода в алмазе окружен четырьмя другими, расположенными от него в направлении от центра в вершинах тетраэдра.

Расстояние между атомами в тетраэдрах равно 0,154 нм.

Прочность всех связей одинакова.

Весь кристалл представляет собой единый трехмерный каркас.

При 20*С плотность алмаза составляет 3,1515 гр/см. Этим объясняется его исключительная твердость, которая по граням различна и уменьшается в последовательности: октаэдр - ромбододекаэдр - куб. В то же время алмаз обладает совершенной спайностью (по октаэдру), а предел прочности на изгиб и сжатие у него ниже, чем у других материалов, поэтому алмаз хрупок, при резком ударе раскалывается и при дроблении сравнительно легко превращается в порошок. Алмаз обладает максимальной жесткостью. Сочетание этих двух свойств позволяет использовать его для абразивных и других инструментов, работающих при значительном удельном давлении.

Показатель преломления (2,42) и дисперсия (0,063) алмаза намного превышают аналогичные свойства других прозрачных минералов, что в сочетании с максимальной твердостью обусловливает его качество как драгоценного камня.

В алмазах обнаружены примеси азота, кислорода, натрия, магния, алюминия, кремния, железа, меди и других, обычно в тысячных долях процента.

Алмаз чрезвычайно стоек к кислотам и щелочам, не смачивается водой, но обладает способностью прилипать к некоторым жировым смесям.

Алмазы в природе встречаются как в виде хорошо выраженных отдельных кристаллов, так и поликристаллических агрегатов. Правильно образованные кристаллы имеют вид многогранников с плоскими гранями: октаэдр, ромбододекаэдр, куб и комбинации этих форм. Очень часто на гранях алмазов имеются многочисленные ступени роста и растворения; если они неразличимы глазом, грани кажутся искривленными, сферическими, в форме октаэдроида, гексаэдроида, кубоида и их комбинаций. Различная форма кристаллов обусловлена их внутренним строением, наличием и характером распределения дефектов, а также физико-химическим взаимодействием с окружающей кристалл средой.

Среди поликристаллических образований выделяются - баллас, карбонадо и борт.

Баллас - это сферолитовые образования с радиально-лучистым строением. Карбонадо - скрытокристаллические агрегаты с размером отдельных кристаллов 0,5-50 мкм. Борт - яснозернистые агрегаты. Балласы и особенно карбонадо имеют самую высокую твердость из всех видов алмазов.

Рис.1 Строение кристаллической решетки алмаза.


Рис.2 Строение кристаллической решетки алмаза.

1.2 Общая характеристика графита

Графит - серо-черное кристаллическое вещество с металлическим блеском, жирное на ощупь, по твердости уступает даже бумаге.

Структура графита слоистая, внутри слоя атомы связаны смешанными ионно-ковалентными связями, а между слоями - существенно металлическими связями.

Атомы углерода в кристаллах графита находятся в sp2-гибридизации. Углы между направлениями связей равны 120*. В результате образуется сетка, состоящая из правильных шестиугольников.

При нагревании без доступа воздуха графит не претерпевает никакого изменения до 3700 *С. При указанной температуре он выгоняется, не плавясь.

Кристаллы графита - это, как правило, тонкие пластинки.

В связи с низкой твердостью и весьма совершенной спайностью графит легко оставляет след на бумаге, жирный на ощупь. Эти свойства графита обусловлены слабыми связями между атомными слоями. Прочностные характеристики этих связей характеризуют низкая удельная теплоемкость графита и его высокая температура плавления. Благодаря этому, графит обладает чрезвычайно высокой огнеупорностью. Кроме того, он хорошо проводит электричество и тепло, устойчив при воздействии многих кислот и других химических реагентов, легко смешивается с другими веществами, отличается малым коэффициентом трения, высокой смазывающей и кроющей способностью. Все это привело к уникальному сочетанию в одном минерале важных свойств. Поэтому графит широко используется в промышленности.

Содержание углерода в минеральном агрегате и структура графита являются главными признаками, определяющими качество. Графитом часто называют материал, который, как правило, не является не только монокристаллическим, но и мономинеральным. В основном имеют в виду агрегатные формы графитового вещества, графитовые и графитсодержащие породы и продукты обогащения. В них, кроме графита, всегда присутствуют примеси (силикаты, кварц, пирит и др.). Свойства таких графитовых материалов зависят не только от содержания графитового углерода, но и от величины, формы и взаимных отношений кристаллов графита т.е. от текстурно-структурных признаков используемого материала. Поэтому для оценки свойств графитовых материалов необходимо учитывать как особенности кристаллической структуры графита, так и текстурно-структурные особенности других их составляющих.

Рис.3. Строение кристаллической решетки графита.


Рис.4. Вкрапленники графита в кальците.


2. Промышленные типы месторождений алмаза и графита

Месторождения алмазов подразделяются на россыпные и коренные, среди которых выделяются типы и подтипы, различающиеся по условиям залегания, формам рудных тел, концентрациям, качеству и запасам алмазов, условиям добычи и обогащения.

Коренные месторождения алмазов кимберлитового типа во всем мире являются основными объектами эксплуатации. Из них добывается около 80% природных алмазов. По запасам алмазов и размерам они разделяются на уникальные, крупные, средние и мелкие. С наибольшей рентабельностью отрабатываются верхние горизонты выходящих на дневную поверхность уникальных и крупных месторождений. В них сосредоточены основные запасы и прогнозные ресурсы алмазов отдельных алмазоносных кимберлитовых полей. Кимберлиты – это «вулканические жерла», заполненные брекчией. Брекчия состоит из обломков и ксенолитов, окружающих и осевших сверху пород, из обломков пород, вынесенных с глубин 45-90 км и более. Цементом является вулканический материал, туфы щелочно-ультроосновного состава, так называемые кимберлиты и лампроиты. Кимберлитовые трубки располагаются на платформах, лампроитовые – в их складчатом обрамлении. Время образования трубок разное – от архея до кайнозоя, а возраст алмазов, даже самых молодых из них, составляет около 2-3 млрд. лет. Образование трубок связано с прорывом вверх по узким каналам под большим давлением, на глубине свыше 80 км, при температуре около 1000*щелочно-ультроосновных расплавов. Большинство хорошо изученных кимберлитовых тел имеет сложное строение; в наиболее упрощенном случае в строении трубки участвуют две основные разновидности пород, образовавшихся в ходе двух последовательных фаз внедрения: брекчия (1-й этап) и массивный «крупнопорфировый» кимберлит (2-й этап). В строении некоторых кимберлитовых трубок выявлены также кимберлитовые дайки и жилы, связанные с трубками. Обнаружены слепые тела, образованные порциями кимберлитовой магмы, не доходившими до дневной поверхности. Месторождения, связанные с дайками и жилами кимберлитов, как правило, относятся к категории мелких, реже средних по запасам алмазов Во многих случаях прорыв вверх достигал палео-поверхности, но многие трубки взрыва могут быть «слепыми» и до сих пор не вскрыты эрозией, т.е. залегают где-то на глубине. Но и на поверхности Земли есть места, где возникают давления вполне достаточные для образования алмаза. Это места удара метеоритов, где алмаз встречается не только в Земле, но и в ряде самих метеоритов.

Узнав физические свойства алмаза и графита, ученые отметили, что это разные формы углерода. Первый – это драгоценный минерал, один из самых твердых в мире. По принятой у геммологов шкале Мооса алмаз имеет наибольший балл твердости – 10. Графит по этой системе не дотягивает даже до 2. Блестящая драгоценность и грифель простого карандаша состоят из углерода. Различие этих минералов определяет тип кристаллической решетки. Но свойства их сильно отличаются друг от друга. Об этом читайте ниже.

Что такое алмаз и графит

Алмаз – самый твердый минерал. Внешне это прозрачный камень, у которого четко видна кристаллическая форма. Диаманты бесцветные, но встречаются разные оттенки, среди которых даже черный. Цвет зависит от природных условий, в которых формировался камень, а также от различных примесей в его структуре.

Графит – хрупкое, жирное на ощупь вещество, имеющее металлический блеск, состоящее из молекул углерода, расположенных слоями и образующих мелкие тонкие пластинки. При его нажатии на листке остается след.

Состав минералов

Первое, с чего начнем рассмотрение характеристики алмаза и графита, это состав минералов. Оба – из углерода, шестого элемента периодической системы.

Поскольку алмаз и графит состоят из частиц углерода, тип вещества у них – индивидуальный, а качественный состав образован соединениями атомов углерода. Формула алмаза и графита в химии проста – С, углерод. Этот химический элемент не имеет запаха, поэтому ни алмаз, ни графит ничем не пахнут.

Хотя химическая формула алмаза имеет схожесть с формулой графита, у структур, в которые соединяются атомы углерода, образуя кристаллическую решетку, есть разница.

Когда у минералов кристаллические решетки имеют отличие, но для них характерен идентичный химический состав, их называют полиморфами. Рассматриваемые минералы – разные виды полиморфных модификаций углерода.

Как и где находят углеродные минералы

Сходство элементарного химического состава не обуславливает схожие свойства веществ. Различия объясняются сложностями происхождения двух разных углеродных пород. Алмазы образуются под действием сильного давления после сверхбыстрого охлаждения. А если атмосферное давление занижено, то при довольно высокой температуре образуется графит.

Подтверждением того, что алмаз и графит образовались не одинаково, служит их нахождение в природе. Около 80% всех бриллиантов добывают в кимберлитовых трубках – глубоких воронках, образованных магмой, вышедшей после взрыва и выхода наружу подземного газа.

Графитовых же месторождений много в осадочных породах и пластах, образованных магмой.

Химическая связь в углеродных минералах

Частицы, из которых состоят твердые вещества, соединены в кристаллические решетки. Науке известны 4 вида таких решеток – ионная, молекулярная, атомная и металлическая.

Внешне драгоценный кристалл схож с кристаллами соли, но у солей ионная кристаллическая решетка.

Тип кристаллической решетки алмаза, как и его полиморфа графита, атомная. В ее узлах лежат атомы углерода. Агрегатное состояние – твердое тело. Но все же по твердости углеродные полиморфы различны.

Свойство алмаза быть таким прочным обусловлено силой химической связи атомов. Структура диаманта трехмерная, атомы углерода в нем расположены в форме трехгранной пирамиды, тетраэдра. Каждая атомарная частица одинаково крепко соединяется со всеми четырьмя соседними, это осуществлено посредством ковалентной связи.

Атомарно графит – это множество слоев шестиугольных фигур, в каждой вершине которых расположен атом углерода. Его слоистая структура двухмерна. Связь в слоях ковалентная сильная, а между слоями гораздо слабее, как у веществ с молекулярной кристаллической решеткой. Пласты связаны непрочно. Поэтому твердость графита меньше по сравнению с бриллиантом.

Взаимосвязь атомного строения и физики минерала

Рассмотрим, как внешне проявляется геометрия атомов. Различие свойств алмаза и графита напрямую связано с типом строения кристаллической решетки. Кристаллическая решетка алмаза имеет звенья из 4 хорошо соединенных атомов углерода. Они образовали сверхпрочные ковалентные сигма-связи. Оптические свойства межатомных соединений поглощают свет, делая кристалл прозрачным. А крепкая фиксация отрицательно заряженных элементарных частиц в однородных по силе связях придает ему твердость и свойства диэлектрика.

Образованные ковалентные пи-соединения гексагональной кристаллической решетки графита скрепляют атомы углерода в слои. При такой связи несколько электронов остаются свободными, поэтому пласты скреплены между собой незначительно. Движение нелокализованных элементарных частиц со знаком минус придает графиту электропроводность. У них отсутствует световая проводимость, что лишает вещество прозрачности, поэтому у графита цвет черный.

Аллотропные модификации углерода

Аллотропия – это способность химических элементов существовать в двух и более физических формах (аллотропах). Самой широкой из всех открытых является аллотропия углерода.

Если вы перечислите основные углеродные аллотропные видоизменения, то это будут:

  • алмаз;
  • графит;
  • карбин;
  • фуллерен.

Из указанных выше два аллотропа углерода синтезированы. Карбин и фуллерен – полученные искусственно аллотропные видоизменения углерода. Карбин – порошок из мелких кристалликов черного цвета. После открытия в лаборатории было найдено и природное вещество. Фуллерен – синтезированный в конце прошлого века в США желтый кристалл около 5 мм в диаметре.

Аллотропические формы углерода могут трансформироваться. Сам по себе переход алмаза в другое состояние не произойдет. Но при нагревании кристалла в безвоздушном пространстве до 1800 градусов он превратится в графит.

Известны методы, позволяющие осуществить и обратные превращения.

Как получить драгоценный камень из графита

Получить алмаз можно из графита. При давлении выше 1000 Па и температуре 3000 градусов с добавлением металлов углерод в графите меняет ковалентные связи. Полученные в результате камни мутные и пористые.

Другой метод – это применение ударной волны, после которой можно любоваться чистыми, прозрачными кристаллами правильной геометрической формы, но очень маленького размера.

Несовершенство этих методов привело к выводу, что алмазы лучше всего выращивать. При нагреве бриллианта до 1,5 тысячи градусов он растет. Но это дорого, поэтому сегодня искусственные драгоценности получают из метана.

Физические и химические свойства

Алмаз не обладает электропроводностью, но тепло проводит. Хорошо преломляет и отражает свет. Прозрачен, имеет блеск. Плавится при 3700-4000 градусов. Лавуазье впервые сжег диамант в 18 веке.

Позже ученые выяснили, что в соединении с кислородом алмаз горит при 721-800 градусах, испаряясь углекислым газом. Без воздуха может перейти в графит при нагреве до 2001-3000 градусов. Химические свойства говорят об устойчивости к воздействию кислот.

Графит электро-и-теплопроводный, нерастворим кислотами и водой, теплостойкий. Температура плавления 2500 – 3000 градусов. Не горит до 250-300 градусов, но при сжигании с температурой выше 300 и до 1000 превращается в углекислый газ.

Сравнительная характеристика

Сравним строение алмаза и графита и их физические свойства: твердость, теплопроводность, электропроводность, особенности химической связи.

О характеристиках минералов расскажет подробная сравнительная таблица:

В этой статье:

«Для каких целей применяют алмаз и графит?» - этим вопросом едва ли задается кто-либо из людей, проявляющих интерес лишь к оболочке минералов. Действительно, что может связывать два таких разных по своим свойствам вещества? Алмаз - твердый минерал, залежи которого в природе встречаются редко. Графит - один из самых мягких минералов, месторождения его имеются во многих частях света. Казалось бы, между этими веществами нет никакой связи, но на самом деле это не так - понимание того факта позволяет не только понять, где и с какой целью их используют, но и то, как это делается.

Физические и химические особенности

Алмаз - прозрачный минерал, форма - кристаллическая. Встречаются алмазы, окрашенные в красный, голубой и черный цвета. Ограненный алмаз становится бриллиантом, стоимость его повышается, но на свойствах вещества это не отражается.

Связь «искусственный алмаз - графит»

Минерал является аллотропной модификацией углерода. По шкале твердости Мооса он занимает 10 позицию и потому считается самым твердым из всех минералов. В этом отличие между алмазом и графитом, несмотря на то что они могут являться производными друг друга.

Алмаз лучше других минералов отражает и преломляет свет. Плотность минерала равняется 3,4-3,5 г/см3. Способность проводить тепло колеблется на уровне 2300 Вт. Коэффициент трения по металлу равняется 0,1, что объясняется наличием у алмаза пленки из адсорбированного газа. Температура плавления алмаза - 4000 градусов Цельсия, при этом он должен подвергаться давлению в 11 ГПа.

Процесс горения минерала начинается при достижении температуры воздуха в 800-1000 градусов. При участии в реакции горения чистого кислорода, алмаз воспламеняется подобно пропану. В процессе горения возникает голубое пламя.

Атомы и молекулы кристаллической решетки алмаза соединены между собой прочными объемными связями, образуя правильный тетраэдр. Каждый атом в таком тетраэдре находится в окружении других атомов, образующих верхушку тетраэдров, расположенных рядом. Таким образом, каждый из тетраэдров является частью всех тетраэдров, что обуславливает твердость и неразрушимость алмаза. Алмаз и графит имеют разное строение решетки.

В отличие от алмаза графит не является кристаллом. Минерал представляет собой набор пластинок черного с серым отливом цвета. Облик минерала напоминает сталь. Графитизация графита происходит в металлических сплавах, содержащих нестойкие карбиды углерода. При контакте с графитом ощущается наличие жира, но сам он мягкий, легко крошится, оставляя черные пятна.

Минерал является проводником тепла и электричества. Являясь полиморфной модификацией углерода, он во многом схож по своему химическому составу с алмазом. Отличительная особенность - строение молекулярной решетки. Решетка графита плоская. Все атомы графита располагаются в одной плоскости, представленной рядом шестиугольников, имеющих слабые связи между собой. Такое строение решетки делает минерал мягким и слоистым, что позволяет применять его в различных областях деятельности.

Кроме того, такое строение решетки делает возможным процесс превращения графита в алмаз. Естественно, что для такого превращения требуются условия, такие, как температура и давление воздуха. Процесс может быть обратным: переход алмаза в графит происходит в ходе термального воздействия и давления.

Области применения

Алмаз является самым твердым из всех минералов. Он режет стекло, дерево, металл, предметы, изготовленные из веществ, уступающих алмазу по твердости. Подобная способность расширяет области применения алмазов, ранее ограничивающиеся исключительно ювелирным делом.

Графит - мягкий минерал, но именно это делает его незаменимым в промышленности, архитектуре и даже искусстве.

Алмаз

Вплоть до середины прошлого столетия алмазы использовались исключительно в качестве украшения. Камни подвергались обработке, использовались в качестве замены деньгам. Необходимо отметить, что первые попытки придать алмазу форму не имели успеха. Твердость минерала не позволяла использовать для его обработки предметы, изготовленные из металла, камня, дерева. В процессе исследований удалось выяснить, что огранку алмаза нужно проводить таким же прочным веществом, то есть самим алмазом. Такого рода открытие навело на мысль о возможности применения алмазов в других областях.

На сегодняшний день алмазам находят применение в:

  1. Строительстве. Создание алмазных буров упростило работу с конструкциями из бетона и стали. Алмазы являются важной деталью сверл, инструментов для резки и демонтажа. Использование минералов исключает появление трещин, что особо важно при прокладке тоннелей, подведении труб, строительстве зданий. Алмазные сверла и пилы режут бетон, сталь, гранит, мрамор, перемалывает щебень. В этой области алмаз и графит не сравнимы, но опять же взаимосвязаны.
  2. Приборостроении. Многие приборы содержат в себе частичку алмазной пыли либо цельные алмазы.
  3. Машиностроительных областях. При обтачивании металлических инструментов чаще всего используются алмазы.
  4. Космической области. Создание точных телескопов невозможно без использования алмазных деталей.
  5. Хирургии. Основным инструментом хирурга является скальпель, толщина и острота которого во многом определяет успех операции. Алмазные скальпели как нельзя лучше справляются с этой задачей. Особого внимания заслуживают разрабатываемые лазеры на кристаллах, проводящим веществом которых выступает алмаз.
  6. Телекоммуникациях и электронике. Чтобы сигналы разных частот могли проходить по одному кабелю, также используются алмазы. Применение их в этой области связано со способностью выдерживать большие температуры и скачки напряжения.
  7. Науке. Минерал нейтрализует воздействие агрессивной среды, потому его используют как защитный элемент. Алмаз является составной частью опытов, проводимых в таких областях, как квантовая физика, оптика, создание лазеров.
  8. Добыче полезных ископаемых. Приборы, основной деталью которых является алмаз, используются при бурении шахт, добыче нефти, угля и газа.

В промышленных целях используют алмазы, выращенные исключительно синтетическим образом. Настоящие камни используются крайне редко, несмотря на то, что графит и алмаз встречаются в природе.

Структура алмаза и графита

Твердый, играющий на свету алмаз и непрозрачный, легко отслаивающийся графит образно можно назвать родными братьями. Ведь в химическом составе того и другого присутствует единственный элемент – углерод. Выясним, почему, имея общее происхождение, эти минералы настолько не похожи друг на друга и чем отличается алмаз от графита.

Определение

Алмаз – минерал, основой которого является углерод. Характеризуется метастабильностью, то есть способностью в обычных условиях неограниченно долго существовать в неизменном виде. Помещение алмаза в специфические условия, например в вакуум при повышенной температуре, приводит к его переходу в графит.

Алмаз

Графит – минерал, выступающий модификацией углерода. При трении от общей массы вещества отделяются чешуйки. Наиболее известное применение графита – изготовление из него карандашного грифеля.


Графит

Сравнение

Явление, при котором вещества имеют различные свойства, но образованы общим химическим элементом, называется аллотропией. Однако в природе, пожалуй, больше не найдется таких абсолютно разных аллотропных форм одного и того же элемента. Чем объясняется отличие алмаза от графита?

Решающую роль здесь играют особенности кристаллической структуры каждого из веществ. Скажем про алмаз. Связь между его атомами невероятно прочная. Это обусловлено способом их расположения относительно друг друга. Смежные атомные ячейки вещества имеют кубическую форму. Частицы расположены в углах ячеек, на их гранях и внутри них. Этот тип строения называется тетраэдрическим.


Ячейка алмаза

Такая геометрия атомов обеспечивает наиболее плотную их организацию, благодаря чему алмаз становится твердым, не поддающимся деформации. Вместе с тем это хрупкое вещество, способное раскалываться от удара. Строением также обуславливается высокая теплопроводность алмаза и свойство его кристаллов преломлять свет.

Графит обладает иной структурой. На атомном уровне он состоит из пластов, расположенных в разных плоскостях. Каждый пласт составляют примыкающие друг к другу шестиугольники, подобно сотам. Связь между атомами, которые являются вершинами шестиугольников, сильна только в пределах каждого слоя. А атомы, находящиеся в разных слоях, практически независимы друг от друга.


Структура графита

След от карандаша – это легко отделяемые слои графита. Вещество из-за особенностей строения поглощает свет, принимая достаточно невзрачный вид (но с металлическим блеском), и обладает электропроводностью.

Присущие минералам свойства определяют их пригодность в той или иной сфере. В чем разница между алмазом и графитом относительно их применения? Блистающий алмаз идеален для ювелирного производства. А твердость этого материала позволяет изготавливать из него качественные резцы по стеклу, суперпрочные сверла и другие востребованные изделия.

Графитовые стержни при протекании многих процессов играют роль электродов. Измельченный графит входит в состав минеральных красок и применяется как смазочный материал. А из смеси этого вещества и глины производят специальные емкости для плавки металлов.

Введение

1.1.Общая характеристика алмаза

1.2. Общая характеристика графита

2. Промышленные типы месторождений гранита и алмаза

3. Природные и технологические типы алмазосодержащих и графитовых руд

4. Разработка месторождений гранита и алмаза

5. Области применения гранита и алмаза

Заключение

Список используемой литературы.


Введение

Алмазная промышленность нашей страны находится в стадии развития, внедрения новых технологий обработки минералов.

Найденные месторождения алмазов вскрываются лишь процессами эрозии. Для разведчика это означает, что существует множество «слепых» месторождений, не выходящих на поверхность. Об их присутствии можно узнать по обнаруженным локальным магнитным аномалиям, верхняя кромка которых располагается на глубине в сотни, а если повезет – то в десятки метров. (А. Портнов).

Исходя из вышесказанного, я могу судить о перспективности развития алмазной промышленности. Именно поэтому я выбрала тему – «Алмаз и графит: свойства, происхождение и значение».

В своей работе я попыталась проанализировать связь между графитом и алмазом. Для этого сравнила эти вещества с нескольких точек зрения. Я рассмотрела общую характеристику данных минералов, промышленные типы их месторождений, природные и технические типы, разработку месторождений, области применения, значение данных минералов.

Несмотря на то, что графит и алмаз полярные по своим свойствам, они являются полиморфными модификациями одного и того же химического элемента - углерода. Полиморфные модификации, или полиморфы - это вещества, которые имеют одинаковый химический состав, но различную кристаллическую структуру. С началом синтеза искусственных алмазов резко возрос интерес к исследованию и поискам полиморфных модификаций углерода. В настоящее время, кроме алмаза и графита, достоверно установленными можно считать лонсдейлит и чаотит. Первый во всех случаях был найден только в тесном взаимопрорастании с алмазом и поэтому называется еще гексагональным алмазом, а второй встречается в виде пластинок, чередующихся с графитом, но расположенных перпендикулярно его плоскости.


1. Полиморфные модификации углерода: алмаз и графит

Единственный минералообразующий элемент алмаза и графита - это углерод. Углерод (С) - химический элемент IV группы периодической системы химических элементов Д.И.Менделеева, атомный номер - 6, относительная атомная масса - 12,011(1). Углерод устойчив в кислотах и щелочах, окисляется только дихроматом калия или натрия, хлористым железом или алюминием. Углерод имеет два стабильных изотопа С(99,89%) и С(0,11%). Данные изотопного состава углерода показывают, что он бывает разного происхождения: биогенного, небиогенного и метеоритного. Многообразие соединений углерода, объясняющееся способностью его атомов соединяться друг с другом и атомами других элементов различными способами, обусловливает особое положение углерода среди других элементов.

1.1 Общая характеристика алмаза

При слове «алмаз» сразу же вспоминаются тайные истории, повествующие о поисках сокровищ. Когда-то люди, охотившиеся за алмазами, и не подозревали, что предметом их страсти является кристаллический углерод, который образует сажу, копоть и уголь. Впервые это доказал Лавуазье. Он поставил опыт по сжиганию алмаза, используя собранную специально для этой цели зажигательную машину. Оказалось, алмаз сгорает на воздухе при температуре около 850-1000*С, не оставляя твердого остатка, как и обычный уголь, а в струе чистого кислорода сгорает при температуре 720-800*С. При нагревании до 2000-3000*С без доступа кислорода он переходит в графит (это объясняется тем, что гомеополярные связи между атомами углерода в алмазе очень прочны, что обусловливает очень высокую температуру плавления.

Алмаз - бесцветное, прозрачное кристаллическое вещество, чрезвычайно сильно преломляющее лучи света.

Атомы углерода в алмазе находятся в состоянии sp3-гибридизации. В возбужденном состоянии происходит распаривание валентных электронов в атомах углерода и образование четырёх неспаренных электронов.

Каждый атом углерода в алмазе окружен четырьмя другими, расположенными от него в направлении от центра в вершинах тетраэдра.

Расстояние между атомами в тетраэдрах равно 0,154 нм.

Прочность всех связей одинакова.

Весь кристалл представляет собой единый трехмерный каркас.

При 20*С плотность алмаза составляет 3,1515 гр/см. Этим объясняется его исключительная твердость, которая по граням различна и уменьшается в последовательности: октаэдр - ромбододекаэдр - куб. В то же время алмаз обладает совершенной спайностью (по октаэдру), а предел прочности на изгиб и сжатие у него ниже, чем у других материалов, поэтому алмаз хрупок, при резком ударе раскалывается и при дроблении сравнительно легко превращается в порошок. Алмаз обладает максимальной жесткостью. Сочетание этих двух свойств позволяет использовать его для абразивных и других инструментов, работающих при значительном удельном давлении.

Показатель преломления (2,42) и дисперсия (0,063) алмаза намного превышают аналогичные свойства других прозрачных минералов, что в сочетании с максимальной твердостью обусловливает его качество как драгоценного камня.

В алмазах обнаружены примеси азота, кислорода, натрия, магния, алюминия, кремния, железа, меди и других, обычно в тысячных долях процента.

Алмаз чрезвычайно стоек к кислотам и щелочам, не смачивается водой, но обладает способностью прилипать к некоторым жировым смесям.

Алмазы в природе встречаются как в виде хорошо выраженных отдельных кристаллов, так и поликристаллических агрегатов. Правильно образованные кристаллы имеют вид многогранников с плоскими гранями: октаэдр, ромбододекаэдр, куб и комбинации этих форм. Очень часто на гранях алмазов имеются многочисленные ступени роста и растворения; если они неразличимы глазом, грани кажутся искривленными, сферическими, в форме октаэдроида, гексаэдроида, кубоида и их комбинаций. Различная форма кристаллов обусловлена их внутренним строением, наличием и характером распределения дефектов, а также физико-химическим взаимодействием с окружающей кристалл средой.

Среди поликристаллических образований выделяются - баллас, карбонадо и борт.

Баллас - это сферолитовые образования с радиально-лучистым строением. Карбонадо - скрытокристаллические агрегаты с размером отдельных кристаллов 0,5-50 мкм. Борт - яснозернистые агрегаты. Балласы и особенно карбонадо имеют самую высокую твердость из всех видов алмазов.

Рис.1 Строение кристаллической решетки алмаза.


Рис.2 Строение кристаллической решетки алмаза.




Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png