Стандартная энергия Гиббса реакции равна сумме стандартных энергий Гиббса продуктов реакций за вычетом суммы стандартных энергий Гиббса исходных веществ с учетом стехиометрических коэффициентов уравнения реакции.

где - стандартная энергия Гиббса реакции,

- сумма стандартных энергий Гиббса продуктов реакции,

- сумма стандартных энергий Гиббса исходныхвеществ,

n, n / - стехиометрические коэффициенты исходных веществ и конечных продуктов в уравнении реакции.

Стандартные значения энергии Гиббса для 1 моля вещества при Т = 298 К приведены в справочнике /5, табл.44; 6, табл.1/.

Решение :

1)Расчет энергии Гиббса.

Находим в справочнике /5, табл.44/ значения стандартных энергий Гиббса для веществ реакции:

а) продукты реакции

б) исходные вещества

Применяя уравнение (63), получим:

Вывод . Полученное значение энергии Гиббса () указывает на то, что данная реакция в закрытой системе может протекать в стандартных условиях в прямом направлении.

2) Расчет энергии Гельмгольца.

Для расчета изохорно-изотермического потенциала рассмотрим соотношение между энергией Гиббса и энергией Гельмгольца:

Если в реакции принимают участие только конденсированные фазы (твердые и жидкие вещества), то изменение объема DV равно нулю.

Если в реакции участвуют газообразные продукты, то изменением объема пренебрегать нельзя.

Рассмотрим простейший случай, когда газы, участвующие в реакции, подчиняются законам идеального газа. Тогда согласно уравнению Клапейрона-Менделеева можно записать PDV=DnRT .

Dn=n кон - n исх,

где n кон - число молей газообразных конечных продуктов;

n исх – число молей газообразных исходных веществ.

В нашем примере газообразный продукт один – углекислый газ, поэтому Dn = 0 - 1= - 1.

Вывод . Так как полученное в результате расчета значение DF <0, то в изохорно-изотермическом процессе в закрытой системе будет протекать самопроизвольный процесс.

· Для нахождения энергии Гиббса можно применять уравнение (56), которое дает возможность производить расчет как в стандартных условиях, так и при любой другой температуре.

Пример 2 . Вычислить энергию Гиббса и Гельмгольца при Т 1 = 298 К и Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па для реакции:

Как скажется повышение температуры на направления протекания данной реакции?

Решение . Для расчета DG реакции воспользуемся уравнением (56):

где DH и DS - соответственно изменение энтальпии и энтропии реакции при заданной температуре:

а) Т =298 К.

Определяем изменение стандартной энтальпии реакции D r H 0 (298) (расчет приведен в примере 1 раздела 1.3.3): D r H 0 (298) = -170,42 кДж.

D r S 0 (298)(расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Вывод . Расчет стандартной энергии Гиббса по справочным данным, приведенный в предыдущем примере, и расчет по уравнению (56), приведенный в данном примере, практически совпадают. Относительная ошибка составляет:

Расчет DF (298)см. в этом же разделе, пример 1.

б) Т = 473 К.

Определяем изменение энтальпии реакции D r H (473) (расчет приведен в примере 2 раздела 1.4.2):

D r H (473) = -125,79 кДж.

Определяем изменение энтропии реакции D r S (473) (расчет приведен в примере 1 раздела 1.5.4):

D r S (473) = -12,9 Дж.

Подставим полученные данные в уравнение (56):

Расчет DF проводим согласно уравнению (64):

Вывод . Ответ на последний вопрос задачи определяется знаком D r S и D r H (см. табл. 1). В нашем случае , т.е. в уравнении член (- TDS) для нашей реакции положителен. Следовательно, с повышением температуры Т в изобарно-изотермическом процессе значение D r G будет возрастать (т.е. становиться менее отрицательным). Это означает, что повышение температуры будет препятствовать протеканию рассматриваемой реакции в прямом направлении.

В изохорно-изотермическом процессе будут наблюдаться аналогичные тенденции для энергии Гельмгольца.

Преобразуем данное уравнение и проинтегрируем:

Если Т 1 = 298 К, то уравнение примет вид:

В зависимости от степени точности возможны три варианта расчета энергии Гиббса по этому способу.

Первый вариант . Предположим, что энтропия реакции не зависит от температуры, т.е. D r S 0 (298) = D r S (Т 2), тогда:

Полученный результат расчета дает существенную погрешность.

Пример 3 . Вычислить энергию Гиббса предложенным способом для реакции:

При Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па.

Решение.

Стандартную энергию Гиббса находим по уравнению (63) (см. пример 1 в разделе 1.5.8.): D r G 0 (298) = -130,48 кДж.

Определяем изменение стандартной энтропии реакции D r S 0 (298) (расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Подставим полученные данные в уравнение (66) и произведем расчет:

Вывод . Результат расчета отличается от результата в примере 2,б раздела 1.5.8, т.к. последний вариант является приближенным, не учитывается фазовый переход воды.

Второй вариант. Предположим, что энтропия реакции зависит от температуры

Если теплоемкость не зависит от температуры D r С Р = const , то после интегрирования имеем:

Подставим полученное значение D r S (Т )в (65):

После интегрирования получим:

учитывая зависимость энтропии реакции от температуры.

Решение.

Определяем D r С Р реакции по первому следствию закона Гесса:

Воспользуемся значениями стандартных изобарных теплоемкостей для индивидуальных веществ, приведенных в справочнике /5, табл. 44/:

а) продукты реакции:

б) исходные вещества:

Расчет стандартной энергии Гиббса для данной реакции приведен в примере 1 раздела 1.5.8. D r G 0 (298) = -130,48 кДж.

Расчет стандартной энтропии для данной реакции приведен в примере 1 раздела 1.5.4. D r S 0 (298) = -133,77 Дж.

Подставляя полученные значения в (67), получим:

Вывод: данный расчет также является приближенным, т.е. он не учитывает зависимость теплоемкости от температуры, но более точным, чем первый способ, рассмотренный выше.

Пример, рассматриваемый нами, является более сложным, т.к. в предложенном интервале температур у одного из веществ, а именно у воды, существует фазовый переход, что необходимо учитывать. Это усложняет расчет и делает его громоздким.

В таких случаях вычислить энергию Гиббса можно, воспользовавшись формулой (56). Расчет этот приведен в примере 2 раздела 1.5.8.

На практике часто для расчета энергии Гиббса используют метод Темкина - Шварцмана (1946 г.), позволяющий стандартную энергию Гиббса при 298 К пересчитать для любой температуры /1, 4, 7, 8/.

Пример 5. Вычислить изменение энергии Гиббса при изотермическом сжатии 0,005 м 3 кислорода от Р 1 =0,1013×10 5 Па до Р 2 =1,013×10 5 Па (Т = 0 0 С ), считая кислород идеальным газом.

Решение. Из уравнение Менделеева-Клапейрона находим число молей кислорода, участвующих в реакции:

Для определения DG воспользуемся формулой (58):

Т.к. процесс протекает при Т= const, то второе слагаемое будет равно нулю. Расчет проводим по формуле dG = VdP.

Из уравнения Менделеева-Клапейрона выразим V:

Подставляем:

Интегрируем и подставляем данные задачи:

Вывод. При изотермическом сжатии кислорода процесс не может протекать самопроизвольно.

Пример 6. Теплота плавления льда при 0 0 С равна 335 Дж/г. Удельная теплоемкость воды равна . Удельная теплоемкость льда равна . Найти DG, DH, DS для процесса превращения 1 моль переохлажденной воды при – 5 0 С в лед.

Решение. Переохлажденная жидкость не находится в состоянии равновесия с твердой фазой. Рассматриваемый процесс не является статическим, поэтому вычислить энтальпию и энтропию по теплоте кристаллизации для переохлажденной жидкости нельзя.

Для вычисления данных функций мысленно заменим нестатический процесс тремя квазистатическими, в результате которых система придет из начального состояния в конечное.

1-й процесс. Нагревание обратимым путем 1 моль воды до температуры замерзания. При этом изменение энтальпии и энтропии согласно уравнениям (26) и (36):

где С Р – молярная теплоемкость воды,

Подставляя в формулы данные задачи, получим:

2-й процесс. Кристаллизация воды при 0 0 С (273 К). В условиях задачи дана удельная теплота плавления ( пл.), т.е. теплота фазового перехода 1 г воды из твердого состояния в жидкое.

где DН 2 – теплота кристаллизации 1 моля воды,

пл. уд – удельная теплота плавления, приведенная в задаче,

М – молярная масса воды.

Энтропия фазового перехода рассчитывается по формуле (47):

Подставим данные и получим:

3-й процесс. Обратимое охлаждение льда от 273 до 268 К. Расчет энтальпии и энтропии проводим аналогично первому процессу.

где С Р – молярная теплоемкость льда,

Подставляя данные, получим:

Общее изменение энтальпии и энтропии в изобарном процессе

Изменение энергии Гиббса в рассматриваемом процессе рассчитывается по формуле (56).

Вывод. По результатам расчета видно, что при превращении 1 моль переохлажденной воды в ледэнтальпия и энтропия в системе убывает. Это значит, что самопроизвольный процесс в таком случае возможен только при низких температурах, когда энергия Гиббса DG приобретает отрицательные значения (см. табл.2), что мы и наблюдаем в нашем примере.

Вопросы для самопроверки:

1. Дайте определение самопроизвольных процессов.

2. Какие процессы называют равновесными?

3. Основные формулировки второго начала термодинамики. Его математического выражение.

4. Каковы возможности второго начала термодинамики?

5. Выведите формулу объединенного закона термодинамики.

6. Каков физический смысл заложен в понятие энтропия?

7. Как изменяется энтропия в равновесных процессах?

8. Как изменяется энтропия в самопроизвольных процессах?

9. В каких системах изменение энтропии может служить мерой направленности физико – химических процессов?

10. В каком соотношении находятся молярные энтропии трех агрегатных состояний одного вещества: газа, жидкости, твердого тела?

11. В изолированной системе самопроизвольно протекает химическая реакция с образованием некоторого количества конечного продукта. Как изменяется энтропия системы?

12. В каких условиях можно использовать энтропию, как функцию, определяющую направление процесса?

13. Какова зависимость энтропии реакции от условий протекания процесса (влияние температуры, давления, объема)?

14. Как рассчитывается энтропия реакции?

15. Зачем были введены термодинамические потенциалы?

16. Каков физический смысл энергии Гиббса, энергии Гельмгольца?

17. В каких системах изменение изобарно – изотермического потенциала может служить мерой направленности физико – химических процессов?

18. В каких системах изменение изохорно – изотермического потенциала может служить мерой направленности физико – химических процессов?

19. За счет чего совершается максимально полезная работа химической реакции при постоянном давлении и температуре

20. В каких реакциях энергия Гиббса и энергия Гельмгольца приобретают одинаковые значения?

21. Как зависит от температуры изменение энергии Гиббса химической реакции?

22. Процесс протекает в условиях постоянства температуры и давления в закрытых системах. Какой термодинамический потенциал следует выбрать в качестве критерия протекания самопроизвольного процесса в этих условиях?

23. Как изменяется энергия Гиббса, если в закрытой системе протекает реакция слева направо при постоянном давлении и температуре?

24. Как изменится энергия Гиббса, если в закрытой системе при постоянном давлении и температуре реакция протекает справа налево?

25. Жидкость превращается в пар при определенной температуре и давлении. Каково соотношение между DG и DF этого процесса?

26. За счет чего совершается максимальная полезная работа химической реакции при постоянном объеме и температуре?

27. Какой термодинамический потенциал следует выбрать в качестве критерия направления реакции, если она протекает в закрытом автоклаве при постоянной температуре? Каково условие самопроизвольного течения процесса, выраженное при помощи этого потенциала?

28. Как энергия Гельмгольца (изохорно – изотермический потенциал) системы зависит от объема при постоянной температуре (если единственный вид работы – работа расширения)? Напишите математическое выражение зависимости.

29. При каких постоянных термодинамических параметрах изменение энтальпии DН может служить критерием направления самопроизвольного процесса? Какой знак DН в этих условиях указывает на самопроизвольный процесс?

30. Равновесная система состоит из трех частей, каждая из которых обладает определенной энтропией: S 1 , S 2 , S 3 . Как можно выразить энтропию системы в целом?

31. Как изменяется энергия Гельмгольца (изохорно – изотермический потенциал) при изотермическом сжатии газа в идеальном состоянии?


Третий закон термодинамики

Анализируя изменения тепловых эффектов и изотермических потенциалов в области низких температур, Нернст в 1906 году высказал предположение, что при приближении к абсолютному нулю значения тепловых эффектов и изотермического потенциала сближаются, и кривые DH = f(T) и DG = f(T) при Т = 0 касаются друг друга и имеют общую касательную (рис.3). Постулат Нернста (тепловая теорема Нернста) справедлив лишь для систем, состоящих из кристаллических веществ.

В математической форме это утверждение выражаетсятак: вблизи абсолютного нуля в реакциях, протекающих в конденсированных системах при Т = 0 ,

Уравнения (69) и (70) являются математическим выражением третьего закона термодинамики.

В соответствии с уравнением (60) из уравнения Нернста следует, что вблизи абсолютного нуля реакции в конденсированных системах не сопровождаются изменением энтропии, т.е. для них DS = 0.

Рис. 3. Относительное положение

кривых DH=f(T) и DG=f(T ) в области

низких температур

Планк в 1912 году предположил, что энтропия правильно сформированного кристалла любого чистого вещества при абсолютном нуле равна нулю (постулат Планка).

Правильно сформированный кристалл - это кристалл с идеальной кристаллической решеткой. Математическое выражение постулата Планка:

Такая зависимость отсутствует в твердых растворах и стеклообразных веществах.

И постулат Планка, и теорема Нернста – оба этих утверждения и являются третьим законом термодинамики, который получил широкое применение для определения абсолютных значений энтропий чистых веществ:

Из приведенного уравнения (71) следует, что в области температур, близких к нулю, теплоемкость веществ тоже стремится к нулю:

Это утверждение основывается на результатах многочисленных измерений теплоемкостей различных веществ при низких температурах.

При дальнейшем развитии термодинамики выяснился условный характер постулата Планка. Было найдено, что при абсолютном нуле некоторые составляющие энтропии, связанные со спинами ядер и изотопным эффектом, не становятся равными нулю. При обычных химических реакциях эти составляющие не меняются, поэтому их практически можно не учитывать. Для таких реакций выводы постулата Планка не нуждаются в уточнении. Однако сам постулат приобретает характер условного допущения.


Варианты заданий для расчетных работ

Определить DH, DU, DS, DF, DG реакций при постоянном давлении

Р = 1,013 10 5 Па и заданной температуре.

№ п/п Уравнение реакции T , K
Fe 2 O 3(т) + 3CO (г) = 2Fe (т) + 3CO 2(г)
CaO (т) + CO 2(г) = CaCO 3(т)
Fe 2 O 3(т) + 3C (т) = 2Fe (т) + 3CO (г)
Al 2 O 3(т) + 3SO 3(г) = Al 2 (SO 4) 3(т)
2Fe 2 O 3(т) + 3C (т) = 4Fe (т) + 3CO (г)
Na 2 CO 3(т) + H 2 SO 4(ж) = Na 2 SO 4(т) + H 2 O (ж) + CO 2(г)
SO 3(г) + H 2 O (ж) = H 2 SO 4(ж)
Na 2 CO 3(т) + Ca(OH) 2(т) = CaCO 3(т) +2NaOH (т)
CaCO 3(т) = CaO (т) + CO 2(г)
2K + H 2 SO 4(ж) = K 2 SO 4(т) + H 2(г)
Ba(OH) 2(т) + 2HNO 3(г) = Ba(NO 3) 2(т) + H 2 O (ж)
2FeS (т) + 3,5O 2(г) = Fe 2 O 3(т) + 2SO 2(г)
4HCl (г) + O 2(г) = 2H 2 O (ж) + 2Cl 2(г)
NH 4 Cl (т) = NH 3(г) + HCl (г)
2N 2(г) + 6H 2 O (г) = 4NH 3(г) + 3O 2(г)
2H 2(г) + CO (г) = CH 4 O (г) (метанол)
0,5S 2(г) + 2H 2 O (ж) = SO 2(г) + 2H 2(г)
0,5S 2 (г) + 2CO 2(г) = SO 2(г) + 2CO (г)
SO 2(г) + Cl 2(г) = SO 2 Cl 2(г)
4NO (г) + 6H 2 O (г) = 4NH 3(г) + 5O 2(г)
2H 3 PO 4(ж) + Ca(OH) 2(т) = Ca(H 2 PO 4) 2 + 2H 2 O (ж)
2KOH (т) + H 2 SO 4(ж) = K 2 SO 4(т) + H 2 O (г)
SO 2(г) + 2CO (г) = S (ромб) + 2CO 2(г)
K 2 CO 3(т) + 2HNO 3(ж) = 2KNO 3(т) + H 2 O (ж) + CO 2(г)
NaI (т) + HCl (г) = NaCl (т) + HI (г)
Ca(OH) 2(т) + 2HCl (г) = CaCl 2(т) + 2H 2 O (ж)
Ba(OH) 2(т) + H 2 SO 4(ж) = BaSO 4(т) + 2H 2 O (ж)
BeO (т) + H 2 SO 4(ж) = BeSO 4(т) + H 2 O (ж)
Al 2 O 3(т) + 6HCl (г) = 2AlCl 3(т) + 3H 2 O (г)
CuO (т) + H 2 S (г) = CuS (т) +H 2 O (г)
CuO (т) + 2HCl (г) = CuCl 2(т) + H 2 O (ж)
2CO (г) + 3H 2(г) = H 2 O (ж) + C 2 H 4 O (г) (ацетальдегид)
Ag 2 O (т) + 2HNO 3(ж) = 2AgNO 3(т) + 2H 2 O (ж)
CO 2(г) + 2NH 3(г) = H 2 O (ж) + CH 4 N 2 O (т) (карбамид)
NaNO 3(т) + KCl (т) = NaCl (т) + KNO 3(т)
4NH 3(г) + 4NO 2(г) + 2H 2 O (ж) + O 2(г) = 4NH 4 NO 3(т)
(NH 4) 2 SO 4(т) + Ba(NO 3) 2 = BaSO 4(т) + 2NH 4 NO 3(т)
(NH 4) 2 SO 4(т) + CaCl 2(т) = CaSO 4(т) + 2NH 4 Cl (т)

Окончание

№ п/п Уравнение реакции T , K
C 2 H 2(г) + H 2 O (ж) = C 2 H 4 O (г) (ацетальдегид)
CH 4(г) + HNO 3(ж) = H 2 O (ж) + CH 3 NO 2(г) (нитрометан)
8Al (т) + 3Fe 3 O 4(т) = 9Fe (т) + 4Al 2 O 3(т)
2NH 4 NO 3(т) = 4H 2 O (ж) + O 2(г) + 2N 2(г)
C 2 H 2(г) + 2H 2 O (ж) = CH 3 COOH (ж) + H 2(г)
CH 4(г) + 2H 2 S (г) = CS 2(г) + 4H 2(г)
H 2 S (г) + CO 2(г) = H 2 O (г) + COS (г)
2NaHCO 3(т) = Na 2 CO 3(т) + H 2 O (г) + CO 2(г)
Zn(OH) 2(т) + CO 2(г) = ZnCO 3(т) + H 2 O (ж)
ZnS (т) + H 2 SO 4(ж) = ZnSO 4(т) + H 2 S (г)
2AgNO 3(т) = 2Ag (т) + O 2(г) +2NO 2(г)
2KMnO 4(т) + 3H 2 O 2(г) = 2MnO 2(т) + 2KOH (т) + 3O 2(г) + 2H 2 O (ж)
KClO 3(т) + H 2 O 2(г) = KCl (т) + 2O 2(г) + H 2 O (ж)
3Cl 2(г) + 6KOH (т) = KClO 3(т) + 3H 2 O (ж) + 5KCl (т)
4Cl 2(г) + H 2 S (г) + 4H 2 O (ж) = 8HCl (г) + H 2 SO 4(ж)
2KOH (т) + MnO (т) + Cl 2(г) = MnO 2 + 2KCl (т) + H 2 O (ж)
P (т) + 5HNO 3(ж) = H 3 PO 4(ж) + 5NO 2(г) + H 2 O (ж)
Cu (т) + 2H 2 SO 4(ж) = CuSO 4(т) + SO 2(г) + 2H 2 O (ж)
PbS (т) + 4H 2 O 2(г) = PbSO 4(т) + 4H 2 O (ж)
8HJ (г) + H 2 SO 4(ж) = 4J 2 + H 2 S (г) + 4H 2 O (ж)
Ca(OH) 2(т) + H 2 S (г) = CaS (т) + 2H 2 O (ж)
P 2 O 5(т) + 3H 2 O (ж) = 2H 3 PO 4(ж)

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Самопроизвольность протекания процессов в системах открытого и закрытого типов описывается через специальный критерий, получивший название энергия Гиббса. Он является функцией состояния. Д.У. Гиббс, работая с термодинамическими системами, сумел вывести ее через энтропию и энтальпию. Энергия Гиббса, в частности, позволяет предсказывать направленность протекания самопроизвольных биологических процессов и оценивать их теоретически достижимый КПД.

Если применить выводы Гиббса ко второму то формулировка будет следующей: при постоянных (const) давлении и температуре без внешнего воздействия система может поддерживать самопроизвольное протекание лишь таких процессов, следствием которых является уменьшение уровня энергии Гиббса до значения, которое наступает при достижении ею установившегося минимума. Равновесие любой термодинамической системы означает неизменность указанной энергии (минимум). Поэтому энергия Гиббса представляет собой потенциал (свободную энтальпию) в изобарно-изотермических системах. Поясним, почему указан именно минимум. Дело в том, что это одно из важнейших постулатов равновесия в термодинамике: данное состояние при неизменности температуры и давления означает, что для очередного изменения необходимо увеличить уровень энергии, а такое возможно лишь при смене каких-либо внешних факторов.

Буквенное обозначение - G. Численно равна разности между известной энтальпией и значением произведения температуры на энтропию. То есть энергия Гиббса может быть выражена через следующую формулу:

где S - энтропия системы; t - температура термодинамическая; H - энтальпия. Энтропия системы в данную формулу включена для того, чтобы учитывать тот факт, что высокая температура приводит к уменьшению упорядоченного состояния системы (беспорядок), а низкая же - наоборот.

Так как и Гиббсова энергия, и энтальпия - одни из функций системы в термодинамике, то посредством изменения G или H можно охарактеризовать протекающие химические превращения. Если приводится и изменение энергии Гиббса, то его относят к классу термохимических.

Применительно к этой энергии может быть сформулировано Правило Гесса: если давление и температура неизменны, то создание новых веществ из первоначальных (базовых реагентов) приводит к тому, что энергия в системе изменяется, при этом вид происходящих реакций и их количество на результат никак не влияют.

Так как энергия, о которой говорится в статье, является изменчивой величиной, то для выполнения расчетов было введено понятие «стандартная энергия Гиббса». Эта величина присутствует в любом химическом справочнике, численно равна 298 кДж/моль (обратите внимание, что размерность точно такая же, как для любой другой молярной энергии). Это значение позволяет рассчитать изменение практически для любого химического процесса.

Если в процессе протекания на систему оказывается внешнее воздействие (совершается работа), то значение энергии Гиббса увеличивается. Такие реакции относят к эндергоническим. Соответственно, если сама система совершает работу, затрачивая энергию, то речь идет о экзергонических проявлениях.

Понятие Гиббсовой энергии нашло широчайшее применение в современной химии. К примеру, синтез полимеров основан на реакциях присоединения. При их проведении несколько частиц объединяются в одну, при этом значение энтропии уменьшается. Основываясь на формуле Гиббса, можно утверждать, что внешнее воздействие (например, высокотемпературное) может обратить подобную экзотермическую реакцию присоединения, что и подтверждается на практике.

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH ), и энтропийным T ΔS , обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G , кДж):

При ΔG G = 0, при котором наступает равновесное состояние обратимого процесса; ΔG > 0 указывает на то, что процесс термодинамически запрещен (рис. 4.4).

Рисунок 4.4.

Изменение энергии Гиббса: а – обратимый процесс; б – необратимый процесс.

Записав уравнение (4.2) в виде ΔH = ΔG + T ΔS , получим, что энтальпия реакции включает свободную энергию Гиббса и «несвободную» энергию ΔS · T . Энергия Гиббса, представляющая собой убыль изобарного (P = const) потенциала, равна максимальной полезной работе. Уменьшаясь с течением химического процесса, ΔG достигает минимума в момент равновесия (ΔG = 0). Второе слагаемое ΔS · T (энтропийный фактор) представляет ту часть энергии системы, которая при данной температуре не может быть превращена в работу. Эта связанная энергия способна лишь рассеиваться в окружающую среду в виде тепла (рост хаотичности системы).

Итак, в химических процессах одновременно изменяются энергетический запас системы (энтальпийный фактор) и степень ее беспорядка (энтропийный фактор, не совершающая работу энергия).

Анализ уравнения (4.2) позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH ) или энтропийный (ΔS · T ).

  • Если ΔH S > 0, то всегда ΔG
  • Если ΔH > 0 и ΔS G > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.
  • В остальных случаях (ΔH S H > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и T ΔS . Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение T ΔS также невелико, и обычно изменение энтальпии больше T ΔS . Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше T ΔS , и даже эндотермические реакции становятся осуществляемыми.

Проиллюстрируем эти четыре случая соответствующими реакциями:

ΔH ΔS > 0
ΔG

C 2H 5–O–C 2H 5 + 6O 2 = 4CO 2 + 5H 2O
(реакция возможна при любой температуре)

ΔH > 0
ΔS ΔG > 0

реакция невозможна

ΔH ΔS ΔG > 0, ΔG

N 2 + 3H 2 = 2NH 3 (возможна при низкой температуре)

ΔH > 0
ΔS > 0
ΔG > 0, ΔG

N 2O 4(г) = 2NO 2(г) (возможна при высокой температуре).

Для оценки знака ΔG реакции важно знать величины ΔH и ΔS наиболее типичных процессов. ΔH образования сложных веществ и ΔH реакции лежат в пределах 80–800 кДж∙. Энтальпия реакции сгорания всегда отрицательна и составляет тысячи кДж∙. Энтальпии фазовых переходов обычно меньше энтальпий образования и химической реакции Δ – десятки кДж∙, Δ и Δ равны 5–25 кДж∙.

Зависимость ΔH от температуры выражается соотношением ΔH T = ΔH ° + ΔC p · ΔT , где ΔC p – изменение теплоемкости системы. Если в интервале температур 298 К – Т реагенты не претерпевают фазовых превращений, то ΔC p = 0, и для расчетов можно пользоваться значениями ΔH °.

Энтропия индивидуальных веществ всегда больше нуля и составляет от десятков до сотен Дж∙моль –1K –1 (табл. 4.1). Знак ΔG определяет направление реального процесса. Однако для оценки осуществимости процесса обычно пользуются значениями стандартной энергии Гиббса ΔG °. Величина ΔG ° не может использоваться в качестве критерия вероятности в эндотермических процессах со значительным возрастанием энтропии (фазовые переходы, реакции термического разложнения с образованием газообразных веществ и др.). Такие процессы могут быть осуществлены за счет энтропийного фактора при условии

Задачи и тесты по теме "Химическая термодинамика. Энергия Гиббса"

  • Химические элементы. Знаки химических элементов - Первоначальные химические понятия и теоретические представления 8–9 класс

    Уроков: 3 Заданий: 9 Тестов: 1

Расчет ΔG для химических процессов можно осуществить двумя способами. В первом способе используется соотношение (4.3)

Рассмотрим в качестве примера расчет ΔG 0 для реакции

Символ "°" , как и прежде, указывает на стандартное состояние всех участников реакции.

Известно, что стандартная энтальпия образования воды равна

Используя табличные значения стандартных энтропий участников реакции, выраженных в энтропийных единицах, э.е. (Дж/моль К): =126 э.е.;

вычислим AS 0 , используя уравнение (3.6):

Таким образом, найдем, что

Полученная отрицательная величина говорит о том, что в стандартных условиях эта реакция должна идти слева направо.

Во втором способе расчета ΔG химических реакций используют то, что эту величину можно рассчитать по известным величинам ΔG других реакций, комбинация уравнений которых дает интересующее нас уравнение реакции (аналогично расчету тепловых эффектов реакции). При этом мы исходим из свойств этой функции как функции состояния: считаем ΔG независимым от пути проведения процесса.

Наиболее удобно использовать для этих целей AG реакций образования (ΔG o 6 p). С реакциями образования мы знакомились, когда изучали первое следствие из закона Гесса. Напоминаем, что реакциями образования в термодинамике считаются такие реакции, в которых 1 моль вещества в стандартном состоянии при данной температуре образуются из простых веществ , взятых в их стандартном состоянии при той же температуре. Реакции образования часто бывают гипотетическими, т.е. не идущими реально, а лишь соответствующими приведенному выше определению. В термодинамических таблицах приводятся изменения энергии Гиббса для реакций образования при стандартных условиях ( ΔG^)- Понятно, что ΔG° 6 p простых веществ равно нулю.

Используя ΔG р, можно рассчитать стандартное изменение энергии Гиббса ( ΔG 0) любой химической реакции. Эта величина равна разности стандартных энергий Гиббса для реакций образования продуктов реакции и исходных веществ с учетом стехиометрических коэффициентов:

(4.4)

В качестве примера рассчитаем (Δ G°) важного биохимического процесса - реакции окисления глюкозы:

В биологических системах такое большое количество энергии освобождается нe сразу, а небольшими порциями в сложном ряду химических превращений.

Для расчета изменения энергий Гиббса реакций при температурах, отличающихся от стандартных ( ΔG T), надо знать величины теплоемкостей участников реакции в интервале температур от 298 К до Т. Расчетные соотношения получают следующим образом:

Так как в соответствии с уравнениями (2.18а) и (3.7)

Аналогичным образом можно получить выражение зависимости ΔF от температуры:

Для практического использования функций ΔF и ΔG полезно знать ответы на следующие вопросы.

1. Каковы различия между ΔF и ΔG химических реакций при Т = const?

Из определений ΔF и ΔG следует, что

В реакциях в конденсированных средах (твердых и жидких) обычно изменением объема можно пренебречь ( ΔV = 0). Тогда

Если в реакциях участвуют газы и можно их считать идеальными , то

При ΔV = 0, т.е. когда реакция идет без изменения числа молей,

2. Какие выводы можно сделать, получив значения термодинамических критериев возможности самопроизвольного протекания процессов?

Если термодинамика дает отрицательный ответ на вопрос о возможности самопроизвольного протекания процесса (ΔF > 0 или ΔG > 0), это означает, что без внешнего подвода энергии процесс невозможен. Процесс может самопроизвольно протекать только в обратном направлении.

Если термодинамика дает положительный ответ ( ΔF< 0 или ΔG < 0), это говорит только о возможности протекания процесса. Но часто в реальных условиях такой процесс не идет. Например, для реакции образования С0 2 ΔG 0 = -395,9 кДж/моль. Но графит с кислородом при 298 К и р = 1 атм не реагирует. Чтобы процесс шел, необходимо создать условия для увеличения скорости (запал, катализаторы и т.д.).

3. Может ли идти процесс, если ΔF > 0 или ΔG > 0?

Может, но не самопроизвольно. Для его проведения надо затратить энергию. Пример - процесс фотосинтеза, идущий в растениях под воздействием солнечной энергии. Другой пример - протекание реакций, характеризующихся ΔG > 0, при сопряжении их с реакциями, для которых AG < 0. При этом сумма величин ΔG для всех стадий процесса, включая сопряженные реакции, отрицательна. Например, для синтеза сахарозы из глюкозы и фруктозы:

ΔG 0 = 21 кДж/моль и, следовательно, прямая реакция самопроизвольно протекать не может. Вместе с тем, известно, что в организмах этот процесс происходит. Сопряженной реакцией в этом случае является гидролиз аде- позинтрифосфата (АТФ) с образованием АДФ и фосфорной кислоты (Ф):

Сопряжение осуществляется путем образования в качестве промежуточного соединения глюкозо-1-фосфата. Реакция идет в две стадии:

1- я стадия: АТФ + глюкоза -> глюкозо-1-фосфат + АДФ;

ΔG 0 = -29,4 кДж/моль.

2- я стадия: глюкозо-1 -фосфат + фруктоза -> сахароза + Ф; AG 0 = 0.

Так как ΔG является величиной аддитивной, суммарный процесс можно записать в виде суммы двух стадий:

АТФ + глюкоза + фруктоза = сахароза + АДФ + Ф; ΔG 0 =

29,4 кДж/моль.

Такое сопряжение типично для многих биологических реакций.

В живых организмах освобожденная при окислении глюкозы энергия не сразу расходуется в различных процессах жизнедеятельности, а запасаeтся впрок в различных соединениях, богатых энергией, таких, как эфиры фосфорной кислоты (АТФ, ЛДФ, креатин- и аргининфосфаты и др.).

4. В каких случаях АН (или ΔU)

В общем случае критерием самопроизвольности является величина ΔG (или ΔF) процесса.

Так как ΔG = ΔН - TΔS (или ΔF = ΔU - TΔS), то при ΔS = 0 (в изоэн- тронийных условиях) ΔG = ΔН (или ΔF= ΔU). В этом случае ΔН (или ΔU) является критерием самопроизвольности процесса. При этом самопроизвольно идут экзотермические реакции ( ΔН < 0, ΔU < 0).

5. В каких случаях ΔS является критерием самопроизвольности процесса?

Рассуждения аналогичны приведенным в п. 4.

Так как ΔG = ΔН - TΔS (или ΔF = ΔU - TΔS), то при отсутствии тепловых эффектов реакций (АН = 0, ΔU = 0) ΔG = -TΔS (или ΔF= -TΔS). В этом случае ΔS является критерием самопроизвольности процесса. При этом самопроизвольно идут процессы с ростом энтропии (ΔS > 0), т.е. процессы, связанные с разложением веществ, их деструкцией, дезагрегацией.

6. Каковы условия самопроизвольного протекания экзотермических реакций ( ΔН < 0, ΔU < 0)?

Выберем для определенности изобарные условия протекания экзотермических реакций: ΔН < G = АН - TΔS.

Рассмотрим, как меняется знак ΔG при варьировании величины ΔS:

  • а) если ΔS > 0, то ΔG = ΔН - TΔS
  • б) если ΔS = 0, то ΔG = ΔН - TΔS
  • в) если ΔS G = ΔΔН - TΔS TΔS :
    • |ΔH|>|TΔS|. При этом ΔG 0. Процесс идет самопроизвольно,
    • | ΔH | = |TΔS|. При этом ΔG = 0. Состояние равновесия,
    • | ΔH |G > 0. Процесс не идет слева направо.

Таким образом, экзотермические реакции термодинамически запрещены только при значительном уменьшении энтропии, например, в некоторых процессах структурирования, образования дополнительных связей и т.д.

Еще один важный вывод из этих рассуждений: в изолированных системах самопроизвольно могут идти процессы с уменьшением энтропии , если они сопровождаются значительным тепловым эффектом. Это особенно важно для понимания возможности самопроизвольного усложнения систем, например, в процессе роста живых организмов. В этом случае источником энергии могут являться все те же богатые энергией эфиры фосфорной кислоты (АТФ, АДФ, креатин- и аргининфосфаты и др.). Кроме того, при рассмотрении реальных систем следует иметь в виду, что они практически не бывают изолированными и имеется возможность подачи энергии извне.

7. Каковы условия самопроизвольного протекания эндотермических реакций ( ΔН > 0)?

Выберем для определенности изобарные условия протекания эндотермических реакций: ΔH> 0. При этом возможность самопроизвольного протекания реакции определяется знаком ΔG = ΔН - TΔS.

Как и в предыдущем случае, рассмотрим, как меняется знак ΔG при варьировании величины ΔS:

  • а) если ΔS > 0, то ΔС = ΔН - TΔS может иметь различные знаки в зависимости от абсолютной величины TΔS :
    • ΔН При этом ΔС
    • ΔН = TΔS. При этом ΔG = 0. Состояние равновесия,
    • ΔН > TΔS. При этом ΔС >
  • б) если ΔS = 0, то АС = ΔН - TΔS > 0. Процесс не идет самопроизвольно слева направо;
  • в) если ΔS 0, то ΔС = ΔН - TΔS > 0. Процесс не идет самопроизвольно слева направо.

Таким образом, эндотермические реакции идут самопроизвольно только при значительном увеличении энтропии в реакции, например, в процессах разложения, деструкции, дезагрегации.

  • 8. Как влияет повышение температуры на ΔU, ΔН, ΔS, ΔG и aлхимических реакций:
    • а) зависимость ΔU от температуры выражается уравнением Кирхгоффа (2.21а):

U растет при Δc v > 0 и падает при Δc v < 0. При ΔСу= 0 величина ΔU не зависит от температуры;

б) зависимость ΔН от температуры выражается уравнением Кирхгоффа (2.20а):

С ростом температуры величина ΔН растет при Δ с р > 0 и надает при Δс р < 0. При Δс р = 0 величина ΔН не зависит от температуры;

в) зависимость ΔS от температуры выражается уравнением (3.8а):

С ростом температуры ΔS растет при Δс р > 0 и падает при Δс /; < 0. При Δс р =0 величина ΔS не зависит от температуры;

г) зависимость ΔF от температуры выражается уравнением (4.6)

Часто можно пренебречь двумя последними слагаемыми из-за их незначительной величины по сравнению с первыми двумя слагаемыми:

Приближенно можно заключить, что с ростом температуры ΔF растет при ΔS < 0 и надает при ΔS > 0. При ΔS = 0 величина ΔF нe зависит от температуры;

д) зависимость ΔG от температуры выражается уравнением (4.5а):

Часто можно пренебречь двумя последними слагаемыми из-за их меньшей величины по сравнению с первыми двумя слагаемыми:

Приближенно можно заключить, что с ростом температуры ΔG растет при ΔS < 0 и падает при ΔS > 0. При ΔS = 0 величина ΔG не зависит от температуры.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png