Солнце – это природный огромный источник энергии. Внутри этого газового шара ежеминутно протекают сотни различных процессов. Без Солнца невозможна жизнь на Земле, так как оно является источником энергии для всех живых организмов. Все земные природные процессы осуществляются благодаря солнечной энергии. Циркуляция атмосферы, круговорот воды, фотосинтез, теплорегуляция на планете – все это было бы невозможным без Солнца. Использование солнечной энергии на Земле такое же привычное явление, как вдох и выдох для человека. Но оно может дать человечеству еще больше. Его успешно можно использовать для получения промышленной энергии, тепловой или электрической.

Потенциал, которым обладает солнечная энергетика

Разработки по использованию солнечной энергии начались в еще в 20 веке. С тех проведено сотни исследований учеными со всех уголков мира. Ими было доказано, что эффективность использования солнечной энергии может быть очень и очень высокой. Данный источник может обеспечить энергоснабжение на всей планете гораздо лучше, чем все существующие на сегодняшний день ресурсы в совокупности. При этом такой вид энергии является общедоступным и бесплатным.

Использование энергии солнечного света

Запасы природных ископаемых, способных обеспечить энергоснабжение на Земле, сокращаются с каждым днем. Поэтому в настоящее время ведутся активные разработки различных способов использования солнечной энергии. Данный ресурс является отличной альтернативой традиционным источникам. Поэтому исследования в этой сфере невероятно важны для общества.

Достижения, которые существуют на данный момент, дали возможность создать системы использования солнечной энергии, которые делаться на два типа:

  • Активные (фотоэлектрические системы, солнечные электростанции и коллекторы).
  • Пассивные (подбор стройматериалов и проектировка помещений для максимального применения энергии солнечного света).

Преобразование и использование солнечной энергии таким образом дало возможность применять неиссякаемый ресурс с высокой продуктивностью и окупаемостью.

Принцип работы пассивных систем

Существует несколько видов пассивного использования солнечной энергии. Большинство из них невероятно просты в применении, но при этом достаточно эффективны. Также существуют и более замысловатые варианты, которые помогают получать больше выгоды. Например:

  • Первое, что приходит на ум, это емкость, в которой хранится вода. Если покрасить ее в темный оттенок, то таким нехитрым образом солнечная энергия будет преобразовываться в тепловую, и вода будет нагреваться.
  • Следующий вариант не под силу выполнить обычному человеку самостоятельно, так как он требует скрупулезного анализа специалиста. Данная технология должна приниматься во внимание еще на этапе проектирования и строительства дома. Основываясь на климатических условиях, здание проектируется таким образом, что само работает как солнечный коллектор. После чего подбираются необходимые материалы, способствующие максимальной аккумуляции энергии солнечных лучей.

Благодаря таким методам становится возможным использование солнечной энергии для отопления и освещения помещений. Также подобные разработки способствуют энергосбережению. Так как подобное проектирование способно не только преобразовывать солнечную энергию, но и сохранять тепло внутри здания, что также позволяет значительно сократить расходы.

Способы активного использования солнечной энергии

Основой данного принципа энергоснабжения являются коллекторы. Такое оборудование поглощает энергию и перерабатывает ее в тепло, с помощью которого можно отапливать дом или подогревать воду, а также преобразовывает солнечную энергию в электрическую. Коллекторы широко применяются как в промышленном объеме, так и на частных участках и сельском хозяйстве.

Помимо коллекторов еще одним оснащением активной системы можно назвать панели с фотоэлементами. Данное устройство позволяет использовать солнечную энергию в быту и в промышленных масштабах. Такие панели очень просты, неприхотливы в обслуживании и долговечны.

Также способом активного применения энергии Солнца являются солнечные электростанции. Они подходят только для масштабного преобразования радиации в тепловую ил электроэнергию. За последние годы они значительно набрали популярность в мире и разработки в этой сфере позволяют расширять возможности и количество таких станций.

Говоря о том, что солнечная энергия помогает экономить на применении традиционных ресурсов, стоит заметить, что подобное преимущество станет действительно полезным людям, обладающим своими частными участками. Собственный дом дает возможность установить оборудование для преобразования энергии, которое сможет удовлетворять, даже если и не полностью, хотя бы часть энергетических потребностей. Это поможет значительно снизить потребление централизованного энергоснабжения и уменьшить расходы.

Солнечная энергия – это отличный источник для таких процессов:

  • Пассивный обогрев и охлаждение дома.

Не следует забывать о том, что Солнце и так греет все, что существует на Земле, и ваш дом не исключение. Поэтому можно усилить благотворное воздействие, внеся на этапе строительства определенные поправки, и использовав специальные техники. Таким образом, вы получите дом с гораздо более комфортной теплорегуляцией без особых вложений.

  • Нагрев воды с помощью солнечной энергии.

Применение энергии солнечных лучей для подогрева воды – это самый простой и дешевый способ, доступный человеку. Подобное оснащение можно купить по адекватным ценам. При этом они смогут окупить себя достаточно быстро, ощутимо снизив расходы на централизованное энергоснабжение.

  • Освещение улиц.

Это самый простой и дешевый способ использования солнечной энергии. Специальные устройства, которые поглощают за день солнечную радиацию, а в темное время суток освещают участки, очень популярны среди владельцев частных домов и сейчас.

Солнечная панель, к сожалению, не отличается всеобщей доступностью. Ее стоимость достаточно высока, но при этом, это удобный и выгодный энергетический ресурс, который успешно можно применять в российских широтах. Но если ваше финансовое положение не позволяет осуществить такую дорогостоящую покупку, вы сможете создать подобные панели самостоятельно.

Как это сделать?

  • Первым делом вам будут нужны солнечные фотоэлементы. В среднем для одной панели их понадобится около 36 штук. Лучше выбирать элементы на монокристаллах, так как у них выше коэффициент полезного действия, и срок эксплуатации дольше.
  • Сама панель производится из фанерного листа. Из него вырезается днище, размер которого вы определяете, смотря на количество фотоэлементов. Далее панель помещается в рамку из брусков.
  • После чего требуется изготовить подложку, на которую будут накладываться фотоэлементы. Это можно сделать из ДВП.
  • Далее вам необходимо сделать отверстия. Обязательно проследите, чтобы они были симметричны.
  • Далее проводится процедура окрашивания и сушки, которая повторяется два раза.
  • После того, как подложка высохнет, на нее выкладываются элементы, и производится распайка. Важный момент – выкладывайте их вверх ногами.
  • В конечном этапе фотоэлементы выкладывают рядами, а потом уже соединяют все в комплексы. Все это по итогу крепится с помощью силикона.

Вот таким несложным способом вы можете создать своими руками оборудование, позволяющее использовать солнечную энергию в быту. Немного усилий и терпения, и у вас все получится.

Использование солнечной энергии в России

На каком этапе развития сейчас находится альтернативная энергетика в России? К сожалению, в нынешнее время это происходит на очень низком уровне. Пока страна не воплощает весь существующий потенциал в жизнь. На это имеет достаточно сильное влияние такой аспект, как наличие больших запасов полезных ископаемых, которые используются для традиционного энергоснабжения.

Тем не менее, успешное использование солнечной энергии в России возможно. Благодаря огромной площади, включающей в себя разные климатические зоны и рельеф, страна имеет возможность активно развивать выработку альтернативной энергии. При грамотном и всестороннем подходе можно обеспечивать весомый процент общего энергоснабжения именно с помощью энергии Солнца.

Принцип преобразования солнечной энергии, её применение и перспективы

В мире всё меньше традиционных источников энергии. Запасы нефти, газа, угля истощаются и всё идёт к тому, что рано или поздно они закончатся. Если к этому времени не найти альтернативных источников энергии, то человечество ждёт катастрофа. Поэтому во всех развитых странах ведутся исследования по открытию и разработке новых источников энергии. В первую очередь – это солнечная энергия. С древних времён эта энергию использовалась людьми для освещения жилища, сушки продуктов, одежды и т. п. Солнечная энергетика сегодня является одним из наиболее перспективных источников альтернативной энергии. В настоящее время уже есть достаточно много конструкций, позволяющих преобразовывать энергию солнца в электрическую или тепловую. Отрасль постепенно растёт и развивается, но, как и везде, есть свои проблемы. Обо всём этом речь пойдёт в настоящем материале.

Энергия солнца является одним из самых доступных возобновляемых источников на Земле. Использование солнечной энергии в народном хозяйстве положительно сказывается на состоянии окружающей среды, поскольку для её получения не требуется бурить скважины или разрабатывать шахты. К тому же, этот вид энергии свободный и не стоит ничего. Естественно, что требуются затраты на покупку и монтаж оборудования.

Проблема в том, что солнце – это прерывистый источник энергии. Так, что требуется накопление энергии и использование её в связке с другими энергетическими источниками. Основная проблема на сегодняшний день заключается в том, что современное оборудование имеет низкую эффективность преобразования энергии солнца в электрическую и тепловую. Поэтому все разработки направлены на то, чтобы увеличить КПД таких систем и снизить их стоимость.

Кстати, очень много ресурсов на планете представляют собой производные от солнечной энергии. К примеру, ветер, который является ещё одним возобновляемым источников, не дул бы без солнца. Испарение воды и накопление её в реках также происходит под действием солнца. А вода, как известно, используется гидроэнергетике. Биотоплива также не было бы без солнца. Поэтому, помимо прямого источника энергии, солнце влияет на другие сферы энергетики.

Солнце отправляет к поверхности нашей планеты радиацию. Из широкого спектра излучения поверхности Земли достигают 3 типа волн:

  • Световые. В спектре излучения их примерно 49 процентов;
  • Инфракрасные. Их доля также 49 процентов. Благодаря этим волнам наша планета нагревается;
  • Ультрафиолетовые. В спектре солнечного излучения их примерно 2 процента. Они невидимы для нашего глаза.

Экскурс в историю

Как развивалась солнечная энергетика до наших дней? Об использовании солнца в своей деятельности человек думал с древних времён. Всем известна легенда, согласно которой Архимед сжёг флот неприятеля у своего города Сиракузы. Он использовал для этого зажигательные зеркала. Несколько тысяч лет назад на Ближнем востоке дворцы правителей отапливали водой, которая нагревалась солнцем. В некоторых странах выпариваем морской воды на солнце получали соль. Учёные часто проводили опыты с нагревательными аппаратами, работающими от солнечной энергии.

Первые модели таких нагревателей были выпущены в XVII─XVII веках. В частности, исследователь Н. Соссюр представил свою версию водонагревателя. Он представляет собой ящик из дерева, накрытый стеклянной крышкой. Вода в этом устройстве подогревалась до 88 градусов Цельсия. В 1774 году А. Лавуазье использовал линзы для концентрации тепла от солнца. И также появились линзы, позволяющие локально расплавить чугун за несколько секунд.

Батареи, преобразующие энергию солнца в механическую, создали французские учёные. В конце XIX века исследователь О. Мушо разработал инсолятор, фокусирующий лучи с помощью линзы на паровом котле. Этот котёл использовался для работы печатной машины. В США в то время удалось создать агрегат, работающий от солнца, мощностью в 15 «лошадей».



Долгое время инсоляторы выпускались по схеме, использующей энергию солнца для превращения воды в пар. И преобразованная энергия использовалась для совершения какой-либо работы. Первое устройство, преобразующее солнечную энергию в электрическую, было создано в 1953 году в США. Оно стало прообразом современных солнечных батарей. Фотоэлектрический эффект, на котором основана их работа, был открыт ещё в 70-е годы XIX столетия.

В тридцатые годы прошлого столетия академик СССР А. Ф. Иоффе предложил использовать полупроводниковые фотоэлементы для преобразования энергии солнца. КПД батарей в то время был менее 1%. Прошло много лет до того, как были разработаны фотоэлементы, имеющие КПД на уровне 10─15 процентов. Затем американцы построили солнечные батареи современного типа.

Для получения большей мощности солнечных систем низкий КПД компенсируется увеличенной площадью фотоэлементов. Но это не выход, поскольку кремниевые полупроводники в фотоэлементах довольно дорогие. При увеличении КПД возрастает стоимость материалов. Это является главным препятствием для массового использования солнечных батарей. Но по мере истощения ресурсов их использование будет всё более выгодным. Кроме того, исследования по увеличению КПД фотоэлементов не прекращаются.

Стоит сказать, что батареи на основе полупроводников достаточно долговечны и не требуют квалификации для ухода за ними. Поэтому их чаще всего используют в быту. Есть также целые солнечные электростанции. Как правило, они создаются в странах с большим числом солнечных дней в году. Это Израиль, Саудовская Аравия, юг США, Индия, Испания. Сейчас есть и совсем фантастические проекты. Например, солнечные электростанции вне атмосферы. Там солнечный свет ещё не потерял энергию. То есть, излучение предлагается улавливать на орбите и затем переводить в микроволны. Затем в таком виде энергия будет отправляться на Землю.

Преобразование солнечной энергии

Прежде всего, стоит сказать о том, в чём можно выразить и оценить солнечную энергию.

Как можно оценить величину солнечной энергии?

Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.



Версии об источниках солнечной энергии высказывались самые разные. На данный момент специалисты утверждают, что энергии высвобождается в результате превращения четырёх атомов H2 в ядро He. Процесс протекает с выделением существенного количества энергии. Для сравнения представьте, что энергия превращения 1 грамма H2 сопоставима с той, что выделяется при сжигании 15 тонн углеводородов.

Способы преобразования

Поскольку наука на сегодняшний день не имеет устройств, работающих на энергии солнца в чистом виде, её требуется преобразовать в другой тип. Для этого были созданы такие устройства, как солнечные батареи и коллектор. Батареи преобразуют солнечную энергию в электрическую. А коллектор вырабатывает тепловую энергию. Есть также модели, совмещающие эти два вида. Они называются гибридными.




Основные способы преобразования энергии солнца представлены ниже:
  • фотоэлектрический;
  • гелиотермальный;
  • термовоздушный;
  • солнечные аэростатные электростанции.

Первый способ самый распространённый. Здесь используются фотоэлектрические панели, которые под воздействием солнца вырабатывают электрическую энергию. В большинстве случаев их делают из кремния. Толщина таких панелей составляет десятые доли миллиметра. Такие панели объединяются в фотоэлектрические модули (батареи) и устанавливаются на солнце. Чаще всего их ставят на крышах домов. В принципе, ничто не мешает разместить их на земле. Нужно, только чтобы вокруг них не было крупных предметов, других зданий и деревьев, которые могут отбрасывать тень.

Кроме фотоэлементов, для получения электрической энергии применяются тонкопленочные или . Их преимуществом является малая толщина, а недостатком – сниженный КПД. Такие модели часто используются в портативных зарядках для различных гаджетов.

Термовоздушный способ преобразования подразумевает получение энергию потока воздуха. Этот поток направляется на турбогенератор. В аэростатных электростанциях под действием солнечной энергии в аэростатном баллоне генерируется водяной пар. Поверхность аэростата покрывается специальным покрытием, поглощающим солнечные лучи. Такие электростанции способны работать в пасмурную погоду и в тёмное время суток благодаря запасу пара в аэростате.

Гелиотремальная энергетика основана на нагреве поверхности энергоносителя в специальном коллекторе. Например, это может быть нагрев воды для системы отопления дома. В качестве теплоносителя может использоваться не только вода, но и воздух. Он может нагреваться в коллекторе и подаваться в систему вентиляции дома.

Все эти системы стоят достаточно дорого, но их освоение и совершенствование постепенно продолжается.

Преимущества и недостатки солнечной энергии

Преимущества

  • Бесплатно. Одно из главных преимуществ энергии солнца – это отсутствие платы за неё. Солнечные панели делаются с использованием кремния, запасов которого достаточно много;
  • Нет побочного действия. Процесс преобразования энергии происходит без шума, вредных выбросов и отходов, воздействия на окружающую среду. Этого нельзя сказать о тепловой, гидро и атомной энергетике. Все традиционные источники в той или иной мере наносят вред ОС;
  • Безопасность и надёжность. Оборудование долговечное (служит до 30 лет). После 20─25 лет использования фотоэлементы выдают до 80 процентов от своего номинала;
  • Рециркуляция. Солнечные панели полностью перерабатываются и могут быть снова использованы в производстве;
  • Простота обслуживания. Оборудование довольно просто разворачивается и работает в автономном режиме;
  • Хорошо адаптированы для использования в частных домах;
  • Эстетика. Можно установить на крыше или фасаде здания не в ущерб внешнему виду;
  • Хорошо интегрируются в качестве вспомогательных систем энергоснабжения.

Энергия солнца используется в качестве источника как электрической, так и тепловой энергии. Она экологически чиста, и в процессе ее преобразования не образуется вредных выбросов. Этот относительно новый способ производства электроэнергии получил бурное развитие в середине 2000-х годов, когда страны ЕС стали внедрять политику снижения зависимости от углеводородов в сфере производства электроэнергии. Еще одной целью было снижение выбросов в атмосферу парниковых газов. Именно в эти годы стоимость производства солнечных панелей стала снижаться, а их эффективность – возрастать.

Наиболее благоприятствуют, по длительности светового дня и поступлению солнечных лучей в течение года, тропические и субтропические климатические пояса. В умеренных широтах наиболее благоприятен летний сезон, а что касается экваториальной зоны, то в ней отрицательным фактором является облачность в середине светового дня.

Может осуществляться посредством промежуточного теплового процесса или напрямую - посредством . Фотоэлектрические станции подают электроэнергию прямо в сеть, либо служат источником автономного электроснабжения потребителя. Тепловые же солнечные станции главным образом применяются для получения тепловой энергии путем обогрева различных теплоносителей, таких как вода и воздух.


По состоянию на 2011 год, на всех солнечных электростанциях мира было произведено 61,2 млрд. киловатт-часов электроэнергии, что соответствует 0,28% общего мирового объема произведенной электроэнергии. Этот объем сравним с половиной показателя генерации электроэнергии на ГЭС в России. Главным образом мощности фотоэлектрических станций в мире сосредоточены в небольшом количестве стран: в 2012 году 7 стран-лидеров обладали 80% суммарных мощностей. Самое стремительное развитие отрасль получила в Европе, где было сосредоточено 68% мировых установленных мощностей. На первом месте Германия, на которую приходится (2012 год) около 33% мировых мощностей, далее идут Италия, Испания и Франция.

В 2012 году установленная мощность солнечных фотоэлектрических станций во всем мире составила 100,1 ГВт, что меньше 2% суммарного показателя по мировой электроэнергетике. В период с 2007 по 2012 годы этот объем вырос в 10 раз.


В Китае, США и Японии располагались мощности солнечной энергетики по 7-10 ГВт. В течение нескольких последних лет особенно быстро солнечная энергетика развивается в Китае, где общая мощность фотоэлектрических станций страны выросла в 10 раз за 2 года - от 0,8 ГВт в 2010 году до 8,3 ГВт в 2012 году. Сейчас на Японию и Китай приходится 50% мирового рынка солнечной энергетики. Намерения Китая - получить в 2015 году 35 ГВт электроэнергии от солнечных установок. Это вызвано все растущими потребностями в энергии, а также необходимостью борьбы за чистоту экологии, которая страдает от сжигания ископаемого топлива.

По прогнозам Японской Ассоциации фотоэлектрической энергии, к 2030 году суммарная мощность солнечных станций Японии достигнет 100 ГВт.

В планах Индии – увеличение, в среднесрочной перспективе, мощности солнечных установок в 10 раз, то есть от 2 ГВт до 20 ГВт. Стоимость солнечной энергии в Индии уже достигла уровня 100 долларов за 1 Мегаватт, что сравнимо с энергией, получаемой в стране из импортного угля или газа.

Лишь 30 процентов территории Африки, расположенной к югу от Сахары, имеют доступ к . Там развиваются автономные солнечные установки и микро-сети. Африка, как регион с мощной добывающей промышленностью, таким путем рассчитывает получить альтернативу дизельным электростанциям, а также надежный резервный источник для ненадежных электросетей.


В России сейчас идет период становления солнечной энергетики. Первая фотоэлектрическая станция мощностью 100 кВт, расположенная на территории Белгородской области, была запущена в 2010 году. Солнечные поликристаллические панели для нее закупались на Рязанском заводе металлокерамических приборов. В Республике Алтай с 2014 года началось строительство солнечной электростанции мощностью 5МВт. Рассматриваются и другие возможные проекты в этой сфере, в том числе в Приморском и Ставропольском краях, а также в Челябинской области.

Что касается солнечной тепловой энергетики, то по данным Renewable Energy Policy Network for the 21st Century, в 2012 году ее мировые установленные мощности составляли 255 ГВт. Большая часть этих тепловых мощностей приходится на Китай. В структуре таких мощностей основную роль играют станции, нацеленные непосредственно на обогрев воды и воздуха.

Солнечная энергия - это свет, тепло и жизнь на нашей планете, а еще солнечная энергия - главный альтернативный источник, который на несколько порядков превышает весь существующий энергетический потенциал Земли, и он в состоянии полностью обеспечить все ее энергетические потребности.

Как Солнце является нескончаемым источником тепла и света (условно), так и энергия солнечного излучения поддерживает жизнь на Земле уже не один миллион лет. Возможность обеспечивать все жизненно важные процессы Солнце имеет благодаря своему составу. В процентном соотношении оно преимущественно состоит из двух элементов: водорода (73%) и гелия (25%). Более подробно об образовании и жизненном цикле Солнца можно прочитать, например, в википедии.

Реакции термоядерного синтеза, которые происходят на Солнце сжигают водород, превращая его в гелий. Колоссальная энергия солнечных лучей, выделяющаяся во время таких процессов, излучается в космос. Кстати, ученые, пытаются повторить эти реакции на земле (реакция управляемого термоядерного синтеза, международный проект ТОКАМАК) .

Все организмы, использующие энергию солнечного света, обеспечивают с ее помощью свои процессы жизнедеятельности - солнечный свет необходим для начальной стадии процесса фотосинтеза. С ее участием происходит синтез таких веществ, как кислород и углеводороды.

Количество водорода на Солнце постепенно уменьшается и рано или поздно придет время, когда его запас на солнце будет исчерпан. Однако, в силу большого количества водорода этого не произойдет, по крайней мере, в ближайшие 5 миллиардов лет.

Каждую секунду в ядре Солнца около 4 миллионов тонн вещества преобразуются в лучистую энергию, в результате чего генерируется солнечное излучение и поток солнечных нейтрино.

Основной приток энергии Солнца, который доходит до атмосферы Земли находится в спектральном диапазоне 0,1 4 мкм. В диапазоне 0,3 1,5-2 мкм атмосфера Земли почти прозрачна для солнечного излучения. Ультрафиолетовые волны (длина волны короче 0,3 мкм) поглощаются слоем озона, который находится на высотах 20-60 км. Рентгеновское и гамма-излучение до поверхности Земли почти не доходят.

Концентрация солнечной энергии характеризируется величиной 1367 Вт/м 2 , именуемой солнечной постоянной. Именно такой поток проходит через перпендикулярную площадку размером в 1 м 2 , если ее поместить на входе в верхний слой атмосферы Земли. При достижении этим потоком уровня моря, потери энергии уменьшают его до 1000 Вт/м 2 на экваторе. Но смена дня и ночи снижает его еще в 3 раза. Для умеренных широт, с учетом зимнего периода он составляет половину от количественного показателя максимального потока на экваторе.

Усреднённый по времени и по поверхности Земли, этот поток составляет 341 Вт/м 2 . В расчете на полную поверхность, или 1,74х10 17 Вт в расчёте на полную поверхность Земли. Таким образом, в сутки Земля на поверхности получит 4,176х10 15 кВтч энергии, большая часть которой, возвращается в космос в виде излучения.

По данным МЭА на 2015 год, мировое производство энергии составило 19099 Mtoe (эквивалент мегатонны нефти). В пересчёте на привычные киловаттчасы, эта цифра составит 6,07х10 11 кВтч в сутки.

Солнце дает земле энергии в 8 000 раз больше, чем необходимо всему человечеству. Очевидно, что перспективы применения данного вида энергии очень широки. С ее участием развивается ветро-энергетика (ветер возникает из-за разности температур), применяются фотоэлектрические преобразователи и строятся гидроаккумулирующие станции. Имеет место широкое использование солнечных батарей.

Потенциал применения солнечной энергии очень велик.

Преимущества и недостатки использования солнечной энергии

Преимущества использования солнечной энергии привели к тому, что уже сегодня мы видим ее использование в самых разных видах человеческой деятельности.

Главными преимуществами являются:

  • Неисчерпаемость энергии солнца в ближайшие 4 миллиарда лет;
  • Доступность данного вида энергии - именно с ним безопасно и эффективно сегодня работают и фермеры, и хозяева частных домов, и заводы-гиганты;
  • Бесплатность и экологическая чистота вырабатываемой энергии;
  • Перспектива развития данного источника энергии, который становится все более актуальным в силу роста цен на другие виды энергии;
  • Т.к. количество ежегодно вводимого в эксплуатацию оборудования и его надежность растет, уменьшается стоимость вырабатываемого киловатт часа солнечной энергии.

К условным недостаткам солнечной энергии можно отнести:

  • Основным недостатком солнечной энергии является прямая зависимость количества получаемого света и тепла от влияния таких факторов, как погода, время года или же суток. Логическим последствием в таком случае является необходимость аккумулировать энергию, что увеличивает стоимость системы;
  • Для производства элементов оборудования данного предназначения применяются редкие а, следовательно, дорогостоящие элементы.

Перспективы развития солнечной энергетики

Сегодня технологии, в которых используется энергия солнечного света, находят все более широкое применение. Самые распространенные - это солнечные батареи. Фотоэлектрические элементы успешно устанавливаются на различные виды транспорта - начиная от электромобилей и заканчивая самолетами. Японцы практикуют установку их на поезда.

Успешно функционируя, одна из европейских гелиоэлектростанций обеспечивает все потребности Ватикана. Крупнейшая станция в Калифорнии, источником для которой является солнечная энергия (фото дают представления о масштабах), уже сейчас обеспечивает штат своей круглосуточной работой.

Внедрение таких технологий сталкивается с сопротивлением со стороны лидеров углеводородной отрасли - ведь альтернативные источники в энергетике могут в скором времени вытеснить их представителей с лидирующих позиций.

Если говорить о прямом преобразовании, то наибольшее распространение получили такие устройства преобразования солнечной энергии как тепловые трубы (солнечные коллекторы) и батареи солнечных фотоэлементов .

Экономика солнечной установки

При рассмотрении возможности установки солнечной электростанции основное внимание уделяют экологическим, а экономическим аспектам. Звучат они следующим образом:

  1. Какова стоимость солнечной установки?
  2. Каков срок ее окупаемости?
  3. Достаточное ли количество электроэнергии будет генерировать установка?

Целесообразно рассматривать небольшие электростанции мощностью до 50 кВт. Установки большей мощности применяют преимущественно на промышленных объектах.

Достаточное ли количество электроэнергии будет генерировать домашняя солнечная электростанция?

Для ответа на третий вопрос, перед началом проектирования солнечной установки определяет профиль энергопотребления дома. Его можно записать установив на объекте счетчик электроэнергии с функцией сохранения текущих параметров: напряжения сети, потребляемого тока, текущей потребляемой мощности, частоты. Через месяц, вы можете оценить свой профиль потребления со средними, максимальными и минимальными значениями параметров.

Если такой прибор отсутствует, то профиль энергопотребления можно оценить так: потребуется записать все приборы, которые могут использоваться в доме и смоделировать возможные варианты их ежедневного использования. После этого, вооружившись калькулятором, вы сможете рассчитать суточное потребление электричества и пиковые значения мощности.

Существенную роль играет регион, где расположено здание. Энергия, достигающая поверхности Земли, в зависимости от региона, может изменяться от более, чем 5 кВтч/м 2 /день до 1,5 кВтч/м 2 /день и менее.

Если максимальное потребление приходится на светлое время суток, то для обеспечения достаточности генерируемого электричества нужно разделить максимальную потребляемую мощность на мощность одной панели солнечных элементов. Тип и характеристики панелей известны из каталогов производителей. Нужно учитывать, что характеристики солнечных панелей приведены при их максимальной освещенности - поправка на региональный коэффициент обязательна. Зимний период, когда батареи покрыты снегом не учитывается.

Такой расчет не учитывает следующую особенность: В течении дня, установка будет всегда генерировать избыточное количество энергии , а ночью, по понятным причинам, генерация будет равна 0.

Аккумуляторные батареи с одной стороны увеличивают общую стоимость системы, с другой стороны, позволяют уменьшить количество панелей солнечных элементов за счет накопления энергии в периоды меньшего энергопотребления.

Для расчета банка АКБ нужно ответить на следующие вопросы:

  • Предполагается ли система полностью автономной?
  • В случае, если система не автономна, то какой максимальный возможный срок перерывов в электроснабжении.

Максимальное потребление в кВт часах умножается на количество часов без основного источника (нужно учитывать, что в момент отключения солнца может и не быть). На основе этих данных можно рассчитать емкость банка АКБ. Разрядка АКБ до 0 сокращает срок их службы, поэтому в расчете вводят коэффициент показателя максимального разряда, например, он может быть 50, 40 или 30 %. Чем меньше максимальный показатель разряда, тем большее количество АКБ потребуется.

Стоимость установки солнечной генерации

Основные составляющие оборудования системы распределяются по стоимости в следующем процентном соотношении (условно):

  • Инвертор и система управления - 15-40%;
  • Солнечные панели и MPPT контроллеры - 20-40%;
  • Банк АКБ - 30%.

Стоимость солнечных панелей и АКБ будет идентична для систем всех производителей, существенные отличия имеются только в стоимости оборудования инвертора с системой управления и MPPT контроллера.

Разница в цене достигает более 200%, в зависимости от производителя. Это обусловлено не только «брендом», но и возможностями системы, например, удобство в управлении, возможность удаленного доступа, максимальная нагрузка и устойчивость к 2х-3х кратным перегрузкам, возможность частичного отключения нагрузки и т.д.

Каждое конечное техническое решение будет немного отличаться от других из-за того, что все люди используют разную бытовую технику в разное время суток. Идеальной комбинации оборудования, даже на заданную мощность не существует.

В качестве ориентировочной стоимости функциональной солнечной установки в загородный дом с учетом резервирования части мощности можно грубо ориентироваться на цифры 700-1800 USD/кВт в зависимости от производителя оборудования.

Сроки окупаемости установки солнечной генерации

Если хозяева условно выезжают на дачу только на выходные, и при этом в доме отсутствуют потребители, которые работают ежедневно, то, скорее всего, система будет окупаться не менее 10-15 лет, при текущих тарифах на электроэнергию.

При постоянном проживании, сроки окупаемости сократятся до 6-10 лет.

Положительная сторона медали - собственник такого дома получает стабильный источник электроснабжения и не зависит от обрывов ЛЭП или перепада мощностей. Все сидят без света, а вы - со светом, охранные системы функционируют, не нужно вручную открывать гараж и т.п.

Можно предположить, что развитие частного электротранспорта позволит сократить срок окупаемости солнечной установки для домохозяйств. Владелец такого автомобиля будет бесплатно «заправлять» его от собственной крыши .

Срок окупаемости зависит от полноты использования электроэнергии. Если сооружение использует 100% от генерации и при этом подключено к центральной сети электроснабжения, то в общем случае, отсутствует необходимость установки банка АКБ. Расчетный срок полной окупаемости такой установки составит 3-5 лет, а в жарких регионах еще меньше.

Дополнительная выгода образуется из-за того, что днем владелец НЕ ПЛАТИТ по дневному тарифу, а ночью ПЛАТИТ по ночному.

Такими быстро окупаемыми объектами могут быть любые энергозатратные производства с пустой плоской крышей, торгово-развлекательные и спортивные центры и паркинги при них, холодильные комплексы и т.п.

Удивительно, но подобные решения, позволяющие существенно снизить эксплуатационные затраты, до сих пор никак не используется владельцами объектов недвижимости.

В обозримом будущем, с развитием солнечной энергетики, все большее число владельцев зданий станут использовать чистую энергию взамен углеводородного сырья.

Гелиоэнергетика – получение солнечной энергии путем накапливания ее с помощью специальных установок. Сегодня ведется активное развитие солнечной энергетики в России. Ученые страны занимаются вопросами изучения возможностей получения энергоносителей уже много лет. Но особенно тщательно данному вопросу посвящается работа с 2000 года.

На данный момент изобретены и успешно используются различные системы и установки, позволяющие накапливать энергию солнца и преобразовывать ее в энергоносители. Фотоэлектрические комплексы работают от рассеянного солнечного света. Причем мощность установки можно регулировать в зависимости от нужд пользователя. Простое добавление секции фотопреобразователя способно существенно увеличить полезный коэффициент действия, тем самым обеспечить получение необходимого количества энергии.

Сегодняшние перспективы солнечной энергетики

Вопросам усовершенствования механизма использования природной энергии уделяется много внимания современным человеком. Именно поэтому перспективы солнечной энергетики для будущего весьма высоки. Уже в ближайшие годы, по заверению специалистов, мир будет использовать природный ресурс в полной мере, обеспечивая для себя неиссякаемое получение энергоносителей.

Для мировой общественности развитие этой промышленной отрасли является приоритетным. Причин тому несколько. А именно:

  • возможность использования природы для получения энергии;
  • экологическая чистота получаемого продукта;
  • относительная дешевизна;
  • абсолютная безопасность для окружающей среды;
  • минимальные затраты на оборудование (в сравнении с получаемым результатом).

Иными словами, энергия, получаемая из солнечных лучей, имеет для человечества в целом только положительные стороны. Современное развитие технических возможностей дает отличные перспективы – разрабатываемое оборудование способно преобразовывать солнечную энергию с минимальными затратами на работу.

Важно и то, что солнечные установки очень просты в эксплуатации. Они легко монтируются, их несложно ремонтировать и видоизменять, подстраивая под собственные нужды. Фотопреобразователи занимают немного места, их монтируют на крышах зданий. Кроме того, накапливать энергию они способны даже в непогоду.

Ученые пришли к выводу, что количество солнечного света, попадающего на земную поверхность всего за одну неделю, в сотни раз превышает энергию, возможную к получению от всех известных земных энергоносителей (газ, уголь, дерево). Это значит, что человек может всего за 7 дней получить столько энергии, сколько способны дать, например, несколько тонн угля.

Будущее за солнечной энергетикой

Такое утверждение делают международные специалисты. Учитывая возможности, которые дает рассеянный солнечный свет, сомневаться в верности такого мнения не приходится. Несложно убедиться в этом на простом примере.

Для получения одной тонны угля требуются колоссальные затраты, состоящие из времени, человеческого труда и использования специального оборудования. Несложно сосчитать, в какую сумму обходится стране каждая тонна твердотопливного материала.

Что происходит в случае с солнечной энергией? Требуется только однажды установить накопитель (батарею, комплекс, систему), и получение энергии происходит постоянно, без прямого участия человека. То есть, чтобы обогреть жилое помещение или получить бесперебойное электропитание, пользователю не приходится постоянно тратить время, силы и финансовые средства.

В мире будущее солнечной энергетики рассматривается как довольно радужное. И на то есть причины. За последние годы специалистам удалось существенно повысить качество «приемников» солнечной энергии и повысить их конверсию. Как результат, человеку доступны сверхмощные солнечные батареи, отличающиеся высокой надежностью и малыми габаритами.

Альтернативный источник получения энергоносителей позволит человечеству решить проблемы с сохранением окружающей среды. Не стоит забывать и об исчерпывающихся залежах других материалов: угля, газа, дерева. Солнечные лучи – настоящий друг человека.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png