Интерес к когнитивным технологиям и искусственному интеллекту вырос, а венчурные инвестиции по этому направлению для развивающихся и коммерциализируемых продуктов превысили многомиллиардные суммы.

Многие компании инвестируют миллиарды на стартапы на когнитивные технологии и разумное поведение машин.

Пресса, подпитываемая огромными инвестициями утверждает, что интеллект компьютера начинает убивать рабочие места и скоро компьютеры будут умнее, чем люди, а некоторые ученые сравнивают интеллектуальные способности машин с угрозой для выживания человечества.

Искусственный интеллект и разум в технологиях

Развитие интеллектуальных способностей машин

Первые шаги в целях демистификации этого термина, изложение истории и описание некоторых из основных интеллектуальных систем и суть искусственного интеллекта лежащая в его основе.

Определение искусственного интеллекта

Поле разумного поведения страдает от слишком размытого определения определений.

Искусственный интеллект — теория и разработка компьютерных систем, которые могут выполнять задачи, требующие человеческого интеллекта.

Суть искусственного интеллекта включает в себя такие задачи, как зрительное восприятие, распознавание речи, принятие решений в условиях неопределенности, обучение и перевод между языками. Определение позволяет нам сегодня обсуждать практическое применение достигающее окончательного понимания механизмов неврологической разведки. Набор задач, которые обычно требуют человеческого интеллекта может изменяться и делегироваться компьютерным системам, способным выполнять эти задачи. Таким образом, смысл «искусственный интеллект » развивается с течением времени.

Полезное определение искусственного интеллекта - теория и развитие компьютерных систем, способных выполнять задачи, которые обычно требуют человеческого интеллекта.

История искусственного интеллекта

Искусственный интеллект или разум не новая идея. Действительно сам термин датируется с 1950-х. История области характеризуется периодами шумихи и высокими ожидания чередующимися с периодами неудач и разочарований:

  1. После формулирования смелой цели имитации человеческого интеллекта в 1950-х, исследователи разработали широкий спектр демонстрационных программ в 60-х и в 70-х, которые способны выполнять ряд задач, которые считались, что были исключительно сферой человеческой деятельности. Это доказательства теорем, исчисление проблем, реагирование на команды, планирование и выполнение физических действий - даже олицетворение психотерапевта и сочинение музыки. Но упрощенные алгоритмы, плохие методы обработки неопределенности и ограничения вычислительной мощности ставили в тупик попытки решить сложные или более разнообразные проблемы. На фоне разочарования в связи с отсутствием дальнейшего прогресса искусственный интеллект выпал из моды в середине 70-х годов прошлого века.
  2. В начале 80-х годов Япония запустила программу развития передовой компьютерной архитектуры, которая могла бы способствовать разуму. В 1980 мир увидел заинтересованность коммерческих поставщиков технологии этих продуктов. Большие надежды на потенциал экспертных систем в конечном итоге не оправдались, наложились ограничения, включая вопиющее отсутствие здравого смысла, сложность захвата знаний, стоимость и сложность создания и поддержания крупных интеллектуальных систем.
  3. В 90-е годы технические работы над разумным поведением машинного оборудования продолжились. Методы, такие как нейронные сети и генетические алгоритмы получили свежее понимание отчасти потому, что они избежали некоторых ограничений, экспертных систем и потому, что новые алгоритмы сделались более эффективными. При проектировании нейронных сетей изучались структуры мозга. Генетические алгоритмы с целью «развиваться» ввели новые варианты решения путем введения случайных мутаций.

Катализаторы развития искусственного интеллекта

В конце 2000-х годов ряд факторов помогли возобновить прогресс в технологии разумного поведения. Это были факторы, наиболее значимые для прогресса искусственного разума:

Закон Мура

Закон Мура — автор соучредитель Интел Гордон Мур гласит, что количество транзисторов на кристалле микросхемы удваивается каждые 2 года, идет неустанное увеличение вычислительной мощности. Нынешнее поколение микропроцессоров обеспечивает в 4 миллиона раз производительность больше, чем первый чип микропроцессора, созданного в 1971 году.

Большой объем данных

Отчасти благодаря Интернету, социальным медиа, мобильным устройствам, и недорогим датчикам, быстро растет объем данных в мире. Растущее понимание потенциальной ценности этих данных привело к разработке новых методов для управления и анализа очень больших наборов данных. Большие данные стали основой для развития искусственного разума.

Особенность использования данных заключается в том, что некоторые методы искусственного интеллекта используют статистические модели для рассуждения вероятностностых данных, таких как изображения, текст или речь. Эти модели можно улучшить, или «обучить», подвергая большему набору данных, которые теперь стали более доступными, чем когда-либо.

Интернет и облако

Интернет и облачные вычисления являются достижением искусственного интеллекта по двум причинам.

  • Во-первых, они делают доступным огромное количество данных и информации для любого вычислительного устройства, подключенного к Интернету. Это помогло продвинуть работу разумного интеллекта, которые требуют больших наборов данных.
  • Во-вторых, они предоставляют способ для людей сотрудничать - иногда явно или неявно помогая обучить системы искусственного интеллекта. Например, некоторые исследователи использовали краудсорсинг (привлечение онлайнового сообщества) благодаря облачной технологии, чтобы привлечь тысячи людей для описания цифровых изображений, позволяя алгоритмам классификацировать изображения по их описаниям. Google голосовой ввод анализирует обратную связь и свободно вносит информацию от своих пользователей, чтобы улучшить качество автоматизированного перевода и голосового ввода.

Новые алгоритмы для развития искусственного интеллекта

Алгоритм представляет рутинный процесс для решения программ или задач. В последние годы были разработаны новые алгоритмы, которые значительно повышают производительность машинного обучения, важную технологию в своем собственном праве и другие технологии, такие как компьютерное зрение. Тот факт, что алгоритмы машинного обучения теперь доступны на основе открытых источников может способствовать дальнейшему улучшению для разработчиков с целью внесения усовершенствований в работу искусственного интеллекта.

Очевидно, будет мир с искусственным интеллектом и разумом, где приборы, машины гораздо интуитивнее, что упростит и обогатит повседневную жизнь. Например, смартфоны сейчас уже более осведомлены о наших предпочтениях и обстановке, предвидят наши потребности и предоставляют нам соответствующую информацию в нужное время.

«Мы находимся на пороге величайших изменений, сравнимых с эволюцией человека», — Писатель-фантаст Вернор Стефан Виндж

Что бы вы почувствовали, если бы узнали, что стоите на пороге грандиозных изменений, как человечек, изображенный на графике ниже?

Вертикальная ось — развитие человечества, горизонтальная ось — время

Волнующе, не правда ли?

Однако если скрыть часть графика, то все выглядит куда более прозаично.

Далекое будущее уже не за горами

Представьте себе, что вы очутились в 1750 году. В те времена люди еще не слышали об электричестве, общение на расстоянии осуществлялось при помощи факелов, а единственное средство передвижения перед поездкой необходимо было накормить сеном. И вот вы решаете взять с собой «человека из прошлого» и показать ему жизнь в 2016 году. Невозможно даже представить себе, что бы он почувствовал, очутившись на широких ровных улицах, по которым носятся автомобили. Ваш гость невероятно удивился бы тому, что современные люди могут общаться, даже если находятся на разных сторонах Земного шара, следить за спортивными мероприятиями в других странах, смотреть концерты 50-летней давности, а также сохранять любой момент времени на фото или видео. А если рассказать этому человеку из 1750 года об Интернете, Международной космической станции, Большом адронном коллайдере и Теории относительности, его представление о мире наверняка бы рухнуло. Он мог бы даже умереть от переизбытка впечатлений.

Но вот что интересно: если ваш гость вернулся бы в свой «родной» век и решил осуществить аналогичный эксперимент, прокатив на машине времени человека из 1500 года, то хотя прибывшего из прошлого тоже могло бы многое удивить, его опыт не был бы таким же впечатляющим — разница между 1500 и 1750 годами не настолько ощутима, как между 1750 и 2016-м.

Если человек из 18 века захочет произвести впечатление на гостя из прошлого, то ему придется пригласить кого-то, жившего в 12 000 году до нашей эры, еще до Великой аграрной революции. Он действительно мог бы быть «сражен наповал» развитием технологий. Увидев высокие колокольни церквей, корабли, бороздящие просторы океанов, города с тысячами жителей, он лишился бы чувств от нахлынувших эмоций.

Темпы развития технологий и общества постоянно увеличиваются. Известный американский изобретатель и футуролог Рэймонд Курцвейл называет это термином «Закон ускорения истории». Так происходит потому, что внедрение новых технологий позволяет обществу развиваться все более быстрыми темпами. Например, люди, жившие в 19 столетии, обладали более развитыми технологиями, чем в 15-м. Поэтому неудивительно, что 19 век принес человечеству больше достижений, чем 15-й.

Но если технологии развиваются все быстрее и быстрее, нам следует ожидать множество величайших изобретений в будущем, не так ли? Если Курцвейл и его единомышленники правы, то в 2030 году мы испытаем такие же эмоции, как и человек, попавший из 1750 года в наш. А к 2050 году мир настолько изменится, что мы с трудом сможем различить в нем черты предшествующих десятилетий.

Все вышесказанное не является фантастикой — это научно подтверждено и вполне логично. Однако многие все еще скептически воспринимают подобные заявления. Так происходит по ряду причин:

1. Многие считают, что развитие общества происходит равномерно и прямолинейно. Когда мы думаем о том, каким будет мир через 30 лет, мы вспоминаем, что же произошло за последние 30 лет. В этот момент мы совершаем такую же ошибку, как и человек из примера выше, живший в 1750 году и пригласивший гостя из 1500 года. Чтобы правильно представить себе предстоящий прогресс, нужно вообразить, что развитие происходит куда более быстрыми темпами, чем в далеком прошлом.

2. Мы неправильно воспринимаем траекторию развития современного общества. Например, если мы посмотрим на небольшой отрезок экспоненциальной кривой, нам может показаться, что это прямая линия (так же, как если бы мы смотрели на часть окружности). Однако экспоненциальный рост не является ровным и гладким. Курцвейл объясняет, что прогресс представляет собой s-образную кривую, как показано на графике ниже:

Каждый «виток» развития начинается с внезапного скачка, который затем сменяется устойчивым и постепенным ростом.

Итак, каждый новый «виток» развития делится на несколько этапов:

1. Медленный рост (ранняя фаза развития);
2. Быстрый рост (вторая, «взрывная» фраза развития);
3. «Выравнивание», когда новая технология доводится до совершенства.

Если взглянуть на недавние события, то можно прийти к выводу о том, что мы не вполне осознаем, как быстро происходит развитие технологий. Например, в промежуток времени между 1995 и 2007 годом мы могли наблюдать появление Интернета, Microsoft, Google и Facebook, социальных сетей, мобильных телефонов, а затем и смартфонов. Но период времени между 2008 и 2016 годами был не так богат на открытия, по крайней мере в сфере высоких технологий. Таким образом, мы сейчас находимся на 3 этапе s-образной линии развития.

3. Многие люди являются заложниками собственного жизненного опыта, который искажает их представление о будущем. Когда мы слышим какое-либо предсказание относительно будущего, которое противоречит нашей точке зрения, основанной на предыдущем опыте, мы считаем это суждение наивным. Например, если вам сегодня скажут, что в будущем люди будут жить по 150-250 лет или , то скорее всего вы ответите: «Это глупо, ведь отлично известно, что все смертны». И действительно, все люди, когда-либо жившие в прошлом, умерли и продолжают умирать и сегодня. Но стоит заметить, что на самолетах тоже никто не летал, пока их наконец не изобрели.

На самом деле в предстоящие несколько десятилетий изменится очень многое, а изменения будут настолько значимыми, что сейчас трудно даже представить себе это. Прочитав данную статью до конца, вы сможете узнать больше о том, что сейчас происходит в мире науки и высоких технологий.

Что такое искусственный интеллект (ИИ)?

1. ИИ ассоциируется у нас с кинофильмами вроде «Звездных войн», «Терминатора» и так далее. В связи с этим мы относимся к нему как к выдумке.

2. ИИ - это довольно широкое понятие. Оно относится как к карманным калькуляторам, так и к автомобилям, управляемым без участия человека. Такое разнообразие сбивает с толку.

3. Мы используем искусственный интеллект в повседневной жизни, но не осознаем этого. Мы воспринимаем ИИ как нечто мифическое из мира будущего, поэтому нам тяжело осознать, что он уже окружает нас.

В связи с этим, необходимо раз и навсегда разобраться в нескольких вещах. Во-первых, искусственный интеллект - это не робот. Робот - это своеобразная оболочка ИИ, которая иногда имеет очертания человеческого тела. Однако искусственный интеллект - это компьютер внутри робота. Его можно сравнить с мозгом внутри тела человека. Например, а женский голос, который мы слышим, это всего лишь персонификация.

Во-вторых, вы, вероятно уже сталкивались с таким понятием, как «сингулярность» или «технологическая сингулярность». Этот термин использовался для описания ситуации, в которой не действуют привычные законы и правила. Данное понятие используется в физике, чтобы описать черные дыры или момент сжатия Вселенной до Большого взрыва. В 1993 году Вернор Винж опубликовал свое знаменитое эссе, в котором использовал сингулярность для определения такого момента в будущем, когда искусственный интеллект превзойдет наш собственный. По его мнению, когда этот момент настанет, мир со всеми его правилами и законами, перестанет существовать как раньше.

Наконец, существует несколько видов искусственного интеллекта, среди которых можно выделить три основные категории:

1. Ограниченный Искусственный Интеллект (ANI, Artificial Narrow Intelligence). Он представляет собой ИИ, специализирующийся в одной конкретной области. Например, может победить чемпиона мира по шахматам в шахматной партии, но это все, на что он способен.

2. Общий Искусственный Интеллект (AGI, Artificial General Intelligence). Такой ИИ представляет собой компьютер, чей интеллект напоминает человеческий, то есть он может выполнять все те же задачи, что и человек. Профессор Линда Готтфредсон описывает этот феномен так: «Общий ИИ воплощает в себе генерализованные мыслительные способности, среди которых также отмечается умение обосновывать, планировать, решать проблемы, мыслить абстрактно, сравнивать комплексные идеи, быстро обучаться, использовать накопленный опыт».

3. Искусственный Суперинтеллект (ASI, Artificial Superintelligence). Шведский философ и профессор Оксфордского Университета Ник Бостром дает следующее определение суперинтеллекту: «Это интеллект, который превосходит человеческий практически во всех областях, включая научные изобретения, общие познания и социальные навыки».

В настоящее время человечество уже с успехом применяет ограниченный ИИ. Мы находимся на пути к освоению AGI. В следующих разделах статьи будет подробно рассмотрена каждая из этих категорий.

Мир, управляемый Ограниченным Искусственным Интеллектом

Ограниченный искусственный интеллект - это машинный разум, который по своей эффективности равен или превосходит человеческий в решении узких задач. Ниже представлено несколько примеров:

  • беспилотный автомобиль от компании Google, который распознает и реагирует на различные препятствия на своем пути;
  • является «пристанищем» различных форм ограниченного ИИ. Когда вы передвигаетесь по городу при помощи подсказок навигатора, получаете музыкальные рекомендации от Pandora, сверяетесь с прогнозом погоды, общаетесь с Siri, вы используете ANI;
  • спам-фильтры в вашей электронной почте — вначале они учатся распознавать спам, а затем, анализируя свой предыдущий опыт и ваши предпочтения, перемещают письма в специальную папку;
  • перводчик Google Translate - классический пример ограниченного ИИ, который достаточно хорошо справляется со своей узкой задачей;
  • в момент приземления самолета специальная система на основе ИИ определяет, через какой гейт должны выходить пассажиры.

Системы ограниченного искусственного интеллекта не представляют никакой угрозы для человека. В худшем случае сбой в такой системе может вызвать локальную катастрофу вроде скачка напряжения или небольшого обвала на финансовом рынке.

Каждое новое изобретение в сфере ограниченного ИИ на шаг приближает нас к созданию общего искусственного интеллекта.

Почему это так сложно?

Если бы вы попытались создать компьютер, схожий по своему интеллекту с человеческим, то вы бы стали по настоящему ценить свою способность мыслить. Констуирование небоскребов, запуск ракет в космос, исследование теории Большого Взрыва - все это намного легче осуществить, чем изучить мозг человека. На сегодняшний момент наш разум является самым сложным объектом в обозримой Вселенной.

Самое интересное заключается в том, что сложности при создании общего ИИ возникают в самых, казалось бы, простых вещах. Например, создать устройство, которое могло бы за долю секунды умножать десятизначные числа, не составляет труда. В это же время невероятно сложно написать программу, которая могла бы распознать, кто находится перед монитором: кошка или собака. Создать компьютер, который обыграет человека в шахматы? Легко! Заставить машину прочитать и понять написанное в детской книжке? Google тратит миллиарды долларов на то, чтобы решить эту задачу. Такие вещи как математические расчеты, создание финансовых стратегий, перевод с одного языка на другой, уже решены при помощи ИИ. Однако, зрение, восприятие, жесты, передвижение в пространстве пока еще остаются нерешенными проблемами для компьютеров.

Эти навыки кажутся простыми для человека, потому что они развивались в течение миллионов лет эволюции. Когда вы протягиваете руку, чтобы взять какой-либо предмет, ваши мышцы, связки и кости совершают целую серию операции, которые согласуются с тем, что видят ваши глаза.

С другой стороны, умножение больших чисел, игра в шахматы - это совершенно новые действия для биологических существ. Вот почему компьютеру очень просто превзойти нас в этом. Задумайтесь, какую программу вы предпочли бы создать: которая могла бы быстро умножать большие числа или просто распознавать букву Б из тысяч других, написанных разными шрифтами?

Еще один забавный пример: взглянув на изображение ниже, и вы, и компьютер сможете безошибочно установить, что на нем представлен прямоугольник, состоящий из квадратов двух разных оттенков:

Но, стоит удалить черный фон, как перед нами откроется полная, ранее скрытая картина:

Человеку не составит никакого труда назвать и описать все фигуры, которые он видит на этом рисунке. Однако компьютер не справится с этой задачей. А проанализировав изображение ниже, он сделает заключение о том, что перед ним комбинация из множества двухмерных объектов белого, черного и серого цветов. При этом человек с легкостью скажет, что на рисунке изображен черный камень:

Все, что было упомянуто выше, касалось лишь восприятия и обработки статичной информации. Чтобы сравниться по уровню интеллекта с человеком, компьютеру нужно научиться распознавать мимику, жесты и так далее. Но как же добиться всего этого?

Первый шаг на пути к созданию общего ИИ - увеличение мощности компьютеров

Очевидно, что если мы собираемся создавать «умные» компьютеры, то они должны обладать такими же мыслительными способностями, как и человек. Одним из способов добиться этого является увеличение количества операций в секунду. Для этого необходимо вычислить, сколько операций в секунду выполняет каждая структура мозга человека.

Рэй Курцвейл произвел некоторые вычисления и сумел получить число в размере 10 000 000 000 000 000 операций в секунду. Приблизительно такой производительностью обладает мозг человека.

В настоящее время самым мощным суперкомпьютером является китайский Tianhe-2, чья производительность составляет 34 квадрильона операций в секунду. Однако размеры этого суперкомпьютера впечатляют - он занимает площадь в 720 квадратных метров и стоит $390 000 000 долларов.

Итак, если посмотреть с технической стороны, то у нас уже есть компьютер, сравнимый по производительности с мозгом человека. Он недоступен массовому потребителю, но в течение десяти лет станет таковым. Однако производительность - не единственное, что способно наделить компьютер интеллектом как у человека. Следующий вопрос: как сделать мощный компьютер разумным?

Второй шаг на пути к созданию общего ИИ - наделить машину интеллектом

Это самая сложная часть процесса, ведь никто на самом деле не знает, как сделать компьютер «умным». До сих пор ведутся споры о том, как наделить машину возможностью отличать кошек от собак или распознавать букву Б. Однако, существует несколько стратегий, некоторые из которых кратко описаны ниже:

1. Копирование мозга человека

В настоящее время ученые работают над так называемым обратным проектированием мозга человека. По оптимистичным прогнозам, это работа завершится к 2030 году. Как только проект будет создан, мы сможем узнать все секреты нашего мозга и черпать из этого новые идеи. Примером подобной системы является искусственная нейронная сеть.

Другой более экстремальной идеей является полная имитация функций мозга человека. В ходе этого эксперимента планируется разрезать мозг на множество тончайших слоев и просканировать каждый из них. Затем используя специальную программу, нужно будет создать 3D-модель, а затем внедрить ее в мощный компьютер. После этого мы получим устройтство, которое официально будет обладать всеми функциями мозга человека - ему останется лишь собирать информацию и учиться.

Как долго нам осталось ждать того момента, когда ученые смогут создать точную копию мозга человека? Достаточно долго, ведь на сегодняшний день специалистам не удалось скопировать даже 1мм слоя мозга, состоящий из 302 нейронов (наш мозг состоит и 100 000 000 000 нейронов).

2. Повторение эволюции мозга человека

Создание «умного» компьютера теоретически возможно, и эволюция нашего собственного мозга является тому подтверждением. Если мы не можем создать точную копию мозга, мы можем постараться имитировать его эволюцию. На самом деле, к примеру, построить самолет невозможно, просто скопировав крылья птицы. Чтобы создать качественный летательный аппарат, лучше использовать какой-то другой подход.

Каким же образом можно симулировать эволюционный процесс для создания общего ИИ? Этот метод называется генетическим алгоритмом. Суть этого подхода заключается в том, что задачи оптимизации и моделирования решаются с использованием механизмов, аналогичных естественному отбору в живой природе. Несколько компьютеров будут выполнять различные задачи, и те из них, что окажутся наиболее эффективными, будут «скрещены» друг с другом. Машины, не справившиеся с задачей, будут исключены. Таким образом, спустя множество повторений данного эксперимента, алгоритм естественного отбора будет создавать все более качественный компьютер. Трудность здесь заключается в автоматизации процесса эволюции и «скрещивания», ведь эволюционный процесс должен идти сам по себе.

Недостатком описанного метода является то, что в природе эволюции требуются миллионы лет, а нам нужны результаты в течение пары десятилетий.

3. Передача всех задач компьютеру

Когда ученые приходят в отчаяние, они пытаются создать программу, которая бы тестировала сама себя. Это может стать самым многообещающим методом создания общего ИИ.

Идея заключается в том, чтобы создать такой компьютер, чьими главными функциями будет исследовании ИИ и кодирование изменений. Такой компьютер будет не только самостоятельно обучаться, но и изменять свою собственную архитектуру. Ученые планируют научить компьютер быть исследователем, главной задачей которого станет развитие собственного интеллекта.

Все это может произойти уже совсем скоро

Постоянное совершенствование компьютеров и проведение инновационных экспериментов с новым ПО происходят параллельно. Общий искусственный интеллект может появиться быстро и неожиданно по двум основным причинам:

1. Экспоненциальный темп роста кажется очень медленным, однако он может ускориться в любой момент.

2. Когда дело касается программного обеспечения, то, кажется, что прогресс происходит очень медленно, однако единственное открытие может в мгновение ока вывести нас на новый уровень развития. Например, всем нам известно, что ранее люди думали, что в центре Вселенной находится Земля. В связи с этим возникало множество трудностей при изучении космоса. Однако, затем система мира неожиданно сменилась на гелиоцентрическую. Как только представления кардинально изменились, новые исследования стали возможными.

На пути от ограниченного ИИ к Искусственному Суперинтеллекту

В определенный момент развития ограниченного ИИ компьютеры начнут превосходить нас. Дело в том, что искусственный интеллект, идентичный мозгу человека, будет иметь несколько преимуществ над людьми, среди которых можно выделить следующие:

Скорость. Нейроны нашего мозга работают с максимальной частотой в 200Гц, в то время как современные микропроцессоры - с 2ГГц, или в 10 миллионов раз быстрее.

Размеры. Мозг человека ограничен размерами черепа и поэтому он не может стать больше. Компьютер может иметь любой размер, предоставляя больше места для хранения файлов.

Надежность и длительность работы. Компьютерные транзисторы работают с большей точностью, чем нейроны мозга. Кроме того, их легко можно починить или заменить. Мозг человека имеет свойство утомляться, в то время как компьютер может работать на полную мощность круглые сутки.

Искусственный интеллект, запрограммированный на постоянное самосовершенствование, не станет ограничивать себя какими-либо пределами. Это означает, что, достигнув уровня человеческого интеллекта, машина не остановится на этом.

Разумеется, когда компьютер станет «умнее» нас, это будет шоком для всего человечества. На самом деле, большинство из нас имеют искаженное представление об интеллекте, которое выглядит так, как показано на рисунке:

Наше искаженное представление об интеллекте.

Горизонтальная ось — время, вертикальная ось — интеллект.

Уровни интеллекта идут снизу вверх: муравей, птица, шимпанзе, недалекий человек, Эйнштейн. Между глупым человеком и Эйнштейном находится человек, который говорит: «Ха-ха! Эти забавные роботы ведут себя как обезьяны!»

Красным цветом обозначено развитие искусственного интеллекта.

Итак, кривая развития искусственного интеллекта на графике стремится достигнуть уровня человека. Мы наблюдаем, как машина постепенно становится умнее животного. Однако как только ИИ доберется до уровня «недалекий человек» или, как выразился Ник Бостром, «деревенский дурачок», это будет означать, что был создан общий искусственный интеллект. В таком случае компьютеру не составит труда достигнуть уровня Эйнштейна. Это бурное развитие показано на рисунке ниже:

Но что же произойдет потом?

Интеллектуальный взрыв

Здесь нелишним будет напомнить о том, что все написанное в этой статье является описание реальных научных прогнозов, составленных уважаемыми учеными.

В любом случае, большинство моделей ограниченного искусственного интеллекта включают в себя функцию самосовершенствования. Но даже, если создать ИИ, в котором изначально не предусмотрена такая функция, то, достигнув уровня человеческого интеллекта, компьютер приобретет способность обучаться самостоятельно по своему желанию. В результате этого машинный разум постепенно разовьется и станет суперинтеллектом, который будет во много раз превосходить человеческий разум.

В настоящее время ведутся споры о том, когда же ИИ достигнет уровня человеческого интеллекта. Сотни ученых сходятся во мнении, что это произойдет примерно в 2040 году. Не слишком большой срок, не правда ли?

Итак, искусственному интеллекту понадобятся десятилетия, чтобы достигнуть уровня человеческого разума, но, в конце концов, это произойдет. Компьютеры научатся понимать мир, окружающий их, так же, как это осознает 4-летний ребенок. Внезапно, усвоив эту информацию, система освоит теоретическую физику, квантовую механику и теорию относительности. Через полтора часа ИИ превратится в искусственный суперинтеллект, в 170 тысяч раз превосходящий возможности мозга человека.

Суперинтеллект - это такой феномен, который мы не в силах даже отчасти осознать. В нашем представлении умный человек имеет IQ 130, а глупый - менее 85. Но какое слово можно подобрать для существа с IQ 12952?

Интеллект является синонимом власти, вот почему на данный момент человек находится на вершине эволюции, подчиняя себе всех прочих живых существ. Это означает, что с появлением искусственного суперинтеллекта мы перестанем быть «венцом природы». Мы будем подчинены сверхразуму.

Если наш ограниченный мозг сумел создать Wi-fi, представьте себе, что может сотворить разум, превосходящий нас в сотни, тысячи и даже миллионы раз. Этот разум сможет контролировать местонахождение каждого атома на планете. Все, что мы сейчас считаем магией или властью Бога, станет повседневной задачей сверхинтеллекта. Сверхразум сможет победить старость, исцелять болезни, уничтожить голод и даже смерть. Он даже сможет перепрограммировать погоду, чтобы защитить жизнь на Земле. Но суперинтеллект сможет в мгновение ока и разрушить жизнь на планете. В нашем сегодняшнем понимании действительности, рядом с нами поселится Бог в роли сверхинтеллекта. Единственный вопрос, который нам следует задать самим себе: будет ли это добрый Бог?

Что же это такое искусственный интеллект? Несомненно, многие слышали о автомобилях, способных управлять своим движением без помощи человека, устройствах распознавания речи, таких как Apple’s Siri, Amazon’s Alexa, Google’s Assistant и Microsoft’s Cortana. Но это далеко не все возможности искусственного интеллекта (ИИ).

ИИ был впервые «открыт» в 1950-х годах. На протяжении многих лет его ожидали взлеты и падения, но на современном этапе развития человечества искусственный интеллект рассматривается как ключевая технология будущего. Благодаря развитию электроники и появлению более быстрых процессоров все большее количество приложений начинает использовать ИИ. Искусственный интеллект – это необычная программная технология, с которой должен ознакомиться каждый инженер. В данной статье мы постараемся кратно описать данную технологию.

Искусственный интеллект определен

ИИ — это подполе компьютерной науки, которая включает в себя более разумное использование компьютеров и электронных компонентов, имитируя человеческий мозг. Интеллект — это способность приобретать знания и опыт и применять их для решения задач. ИИ особенно полезен при анализе и интерпретации массивов данных и извлечении из него реально полезной информации. Из информации приходит понимание, которое может быть применено для принятия решений или какого-либо рода действия.

Области исследования

Искусственный интеллект – это широкая технология с множеством возможных применений. Обычно его разделяют на подветви. Сделаем небольшой обзор каждой из них:

  • Решение общих задач – не имеющих конкретного алгоритмического решения. Задачи с неопределенностью и двусмысленностью.
  • Экспертные системы – программное обеспечение, которое содержит базу знаний правил, фактов и данных, полученных от нескольких отдельных экспертов. База данных может быть запрошена для решения проблем, диагностики заболеваний или предоставления консультаций.
  • Обработка естественного языка (NLP) – используется для анализа текстов. Распознавание голоса также является частью (NLP).
  • Компьютерное зрение — анализ и понимание визуальной информации (фотографии, видео и так далее). Примером могут служить машинное зрение и распознавание лиц. Используется в «автономных» автомобилях и производственных линиях.
  • Робототехника – создание более умных, адаптивных и «самостоятельных» роботов.
  • Игры: ИИ отлично играет в игры. Компьютеры уже запрограммированы на игру и выигрыш в шахматах, покере и в Го.
  • Машинное обучение — процедуры, позволяющие компьютеру учиться на основе входных данных и осмысливать результаты. Нейронные сети составляют основу машинного обучения.

Как работает искусственный интеллект

Обычные компьютеры используют алгоритмы для решения задач. Последовательность инструкций приводит к пошаговому выполнению действий для получения результатов. Традиционные формы искусственного интеллекта основываются на базах знаний и механизмах логического вывода, которые используют различные механизмы для работы с базой знаний через пользовательский интерфейс. Полезные результаты получены некоторыми из перечисленных ниже методов:

  • Поиск: алгоритмы поиска используют базу данных информации, собранной в графы или деревья. Поиск — это основной метод искусственного интеллекта.
  • Логика: дедуктивное и индуктивное рассуждение используется для определения истинности или ложности утверждений. Это включает как логику высказываний, так и логику предикатов.
  • Правила: правила — это серия инструкций «если», которые можно найти для определения результата. Системы, основанные на правилах, называются экспертными системами.
  • Вероятность и статистика: некоторые задачи могут быть решены, и решения находятся, благодаря применению стандартной математической теории вероятности и статистики.
  • Списки: некоторые типы информации могут быть сохранены в списки, которые становятся доступными для поиска.
  • Другими формами знаний являются схемы, фреймы и сценарии, которые представляют собой структуры, инкапсулирующие различные типы знаний. Методы поиска ищут ответы по соответствующим запросам.

Традиционные или унаследованные методы ИИ, такие как поиск, логика, вероятность и правила, считаются первой волной искусственного интеллекта. Эти методы все еще используются и хорошо воспринимают знание и рассуждения, особенно для узкого круга задач. В первой волне ИИ отсутствуют человеческие черты обучения и абстрагирования решений. Эти качества теперь доступны во второй волне искусственного интеллекта, благодаря нейронным сетям и машинному обучению.

Нейронные сети

Сегодня большинство исследований и разработок ИИ основаны на использовании нейронных сетей или искусственных нейронных сетей (ИНС). Эти сети состоят из искусственных нейронов, имитирующих нейроны в человеческом мозге, которые отвечают за наше мышление и обучение. Каждый нейрон является узлом сложной взаимосвязи, которая связывает многие нейроны с другими посредством синапсов. ИНС имитирует эту сеть.

Каждый узел имеет несколько взвешенных входов, а также выход и установку порога (рисунок выше). Такие узлы обычно реализуются в программном обеспечении, хотя аппаратная эмуляция также возможна. Типичная схема состоит из трех слоев — входной слой, скрытый (обрабатывающий или обучающий слой) и выходной слой:

Некоторые механизмы используют обратное распространение для обеспечения обратной связи, которая изменяет веса ввода некоторых узлов по мере получения новой информации.

Машинное обучение и глубокое обучение

Машинное обучение — это метод обучения компьютера распознаванию образов. Компьютер или устройство «обучается» с примером, а затем запускаются специальные программы для сравнения ввода с обученным значением. Как правило, для обучения программного обеспечения требуются огромные объемы данных. Программы машинного обучения предназначены для автоматического изучения, поскольку они получают больше знаний и опыта благодаря новым материалам.

Нейронные сети обычно используются для машинного обучения, однако могут использоваться и другие алгоритмы. Затем программное обеспечение может изменить себя, улучшив распознаваемость на основе новых входных данных. Теперь некоторые системы машинного обучения могут самостоятельно распознавать образы без обучения, а затем модифицировать себя для дальнейшего совершенствования.

Глубокое обучение — это расширенный случай машинного обучения. Он также использует нейронные сети, называемые глубокими нейронными сетями (ГНС). Они включают в себя дополнительные скрытые уровни вычислений для дальнейшего совершенствования своих возможностей. Требуется массовое обучение. Программисты могут повысить производительность, играя с весами межсоединений. ГНС также требуют матричной обработки. Однако следует отметить, что ГНС используют статистические веса, поэтому результаты, скажем, в видимом распознавании, могут быть не 100%. Кроме того, отладка таких систем – очень кропотливая работа.

Машинное обучения и глубокое обучения широко используются для анализа больших массивов данных, а также в компьютерном зрении и распознавании речи. Также они могут применяться и в других областях, таких как медицина, юриспруденция и финансы.

Программное обеспечение искусственного интеллекта

Для программирования ИИ может использоваться почти любой язык программирования, но некоторые языки имеют определенные преимущества. Профильные языки, разработанные специально для ИИ, включают LISP и Prolog. LISP, один из старейших языков более высокого уровня, обрабатывает списки. Prolog основан на логике. Сегодня популярны C ++ и Python. Также существует специальное программное обеспечение для разработки экспертных систем.

Несколько крупных пользователей ИИ предоставляют платформы для разработки, в том числе Amazon, Baidu (Китай), Google, IBM и Microsoft. Эти компании предлагают предварительно обученные системы в качестве стартовой точки для некоторых распространенных приложений, таких как распознавание голоса. Поставщики процессоров, такие как Nvidia и AMD, также предлагают определенную поддержку.

Аппаратное обеспечение для искусственного интеллекта

Запуск программного обеспечения искусственного интеллекта на компьютере обычно требует высокой скорости и большого объема памяти. Однако некоторые простые приложения могут работать на 8-битном процессоре. Некоторые из современных процессоров более чем подходят, а несколько параллельных процессоров могут быть идеальным решением для определенных приложений. Кроме того, для некоторых применений были разработаны специальные процессоры.

Графические процессоры (GPU) представляют собой пример фокусировки архитектуры и набора инструкций на заданное использование для оптимизации производительности. Например, специальные процессоры Nvidia для самостоятельного вождения автомобилей и графические процессоры AMD. Google разработал собственные процессоры для оптимизации своих поисковых систем. Intel и Knupath также предлагают программную поддержку для своих передовых процессоров. В некоторых случаях специальная логика в ASIC или FPGA может реализовать определенное приложение.

Активность и текущий статус

Искусственный интеллект когда-то считался экзотическим программным обеспечением, предназначенным для особых нужд. Требование высокоскоростных компьютеров с большим количеством памяти ограничивало его использование. Сегодня, благодаря супер быстрым процессорам, многоядерным процессорам и дешевой памяти, ИИ стал более популярным. Поисковые системы Google, которые мы все используем ежедневно, основаны на искусственном интеллекте.

На сегодняшний день акцент, несомненно, сделан на нейронные сети и глубокое машинное обучение. В то время как распознавание голоса и самоходные автомобили по-прежнему в центре внимания, появляются другие ключевые приложения, такие как распознавание лиц, беспилотная навигация, робототехника, медицинская диагностика и финансы. В разработке также находятся и передовые военные приложения (например, автономное оружие).

Будущее ИИ выглядит многообещающим. По данным Orbis Research, к 2022 году ожидается рост глобального рынка искусственного интеллекта с совокупным ежегодным темпом роста более 35%. The International Data Corporation (IDC) также позитивно настроена, заявив, что расходы на искусственный интеллект, как ожидается, увеличатся до 47 миллиардов долларов в 2020 году, по сравнению с 8 миллиардами в 2016 году.

У многих возникает логический вопрос – заменит ли искусственный интеллект людей некоторых профессий, и что это будут за профессии? Ответ звучит следующим образом – «возможно и только некоторые». Скорее всего, компьютеры на основе искусственного интеллекта помогут повысить производительность некоторых профессий, повысив производительность, эффективность и скорость принятия решений. Однако, некоторые рабочие места в промышленности все же будут утеряны, так как большое развитие получает робототехника, но замена человека машинами приведет к созданию новых рабочих мест, связанных с обслуживанием этих машин.

Другой вопрос, задаваемый многими людьми, может ли быть искусственный интеллект опасен для человечества? ИИ умен, но не настолько умен. Его основным назначением будет анализ данных, решение задач и принятие решений на основе имеющейся информации и дистиллированных знаний. Люди по прежнему доминируют, особенно когда речь заходит о инновациях и творчестве. Однако трудно предсказать будущее. По крайней мере, на данном этапе развития сверх умных роботов нет, пока нет…

Суть искусственного интеллекта в формате вопросов и ответов. История создания, технологии исследования, связан ли искусственный интеллект с IQ и можно ли его сравнить с человеческим. На вопросы отвечал профессор Стэнфордского университета Джон Маккарти .

Что такое искусственный интеллект (ИИ)?

Искусственный интеллект — это область науки и инжиниринга, занимающаяся созданием машин и компьютерных программ, обладающих интеллектом. Она связана с задачей использования компьютеров для понимания человеческого интеллекта. При этом искусственный интеллект не должен ограничиваться только биологически наблюдаемыми методами.

Да, но что такое интеллект?

Интеллект – способность приходить к решению при помощи вычислений. Интеллект разного вида и уровня есть у людей, многих животных и некоторых машин.

Разве нет определения интеллекта, которое не зависит от соотнесения его с человеческим интеллектом?

До настоящего времени нет понимания, какие виды вычислительных процедур мы хотим назвать интеллектуальными. Мы знаем далеко не обо всех механизмах интеллекта.

Является ли интеллект однозначным понятием, чтобы на вопрос «Обладает ли данная машина интеллектом?» можно было ответить «да» или «нет»?

Нет. Исследования ИИ показали, как использовать лишь некоторые из механизмов. Если для выполнения задачи требуются только хорошо изученные модели, получаются очень впечатляющие результаты. Такие программы обладают «небольшим» интеллектом.

Является ли искусственный интеллект попыткой имитировать человеческий интеллект?

Иногда, но далеко не всегда. С одной стороны, мы узнаем, как заставить машины решать задачи, наблюдая за людьми или за работой наших собственных алгоритмов. С другой стороны, исследователи ИИ используют алгоритмы, которые не наблюдаются у людей или требуют гораздо больших вычислительных ресурсов.

У компьютерных программ есть IQ?

Нет. IQ основан на темпах развития интеллекта у детей. Это отношение возраста, в котором ребенок обычно набирает определенный результат, к возрасту ребенка. Данная оценка подходящим образом распространяется и на взрослых людей. IQ хорошо коррелирует с различными показателями успеха или неудачи в жизни. Но создание компьютеров, которые могут набрать высокий балл в тестах IQ, будет слабо связано с их полезностью. Например, способность ребенка повторять длинную последовательность цифр хорошо коррелирует с другими интеллектуальными способностями. Она показывает, какое количество информации ребенок может запомнить за один раз. При этом удержание в памяти цифр является тривиальной задачей даже для самых примитивных компьютеров.

Как сравнить человеческий и компьютерный интеллекты?

Артур Р. Дженсен, ведущий исследователь в области человеческого интеллекта, в качестве «эвристической гипотезы» утверждает, что обычные люди имеют одни и те же механизмы интеллекта и интеллектуальные различия связаны с «количественными биохимическими и физиологическими условиями». К ним относятся скорость мышления, краткосрочную память и способность формировать точные и извлекаемые долгосрочные воспоминания.

Независимо от того, правильна ли точка зрения Дженсена в отношении человеческого интеллекта, ситуация в ИИ на сегодняшний день является противоположной.

Компьютерные программы имеют большой запас скорости и памяти, но их способности соответствуют интеллектуальным механизмам, которые разработчики программ хорошо понимают и могут вложить в них . Некоторые способности, которые дети обычно не развивают до подросткового возраста, внедряются. Другие, которыми владеют двухлетние дети, все еще отсутствуют. Дело еще более усугубляется тем фактом, что когнитивные науки до сих пор не могут точно определить, каковы человеческие способности. Скорее всего, организация интеллектуальных механизмов ИИ выгодно отличается от таковой у людей.

Когда человеку удается решить задачу быстрее, чем компьютеру, это говорит о том, что разработчикам не хватает понимания механизмов интеллекта, необходимых для эффективного выполнения данной задачи.

Когда началось исследование ИИ?

После Второй мировой войны несколько человек начали независимо работать над интеллектуальными машинами. Английский математик Алан Тьюринг, возможно, был первым из них. Он прочитал свою лекцию в 1947 году. Тьюринг одним из первых решил, что ИИ лучше всего исследовать путем программирования компьютеров, а не конструирования машин . К концу 1950-х годов было много исследователей ИИ, и большинство из них основывали свою работу на программировании компьютеров.

Является ли целью ИИ поместить человеческий разум в компьютер?

У человеческого разума есть много особенностей, вряд ли реально имитировать каждую из них.


Что такое тест Тьюринга?

В статье А. Алана Тьюринга 1950 года «Вычислительная техника и разум» обсуждались условия обладания машиной интеллектом. Он утверждал, что если машина может успешно притворяться человеком перед разумным наблюдателем, то вы, конечно же, должны считать ее разумной. Этот критерий удовлетворит большинство людей, но не всех философов. Наблюдатель должен взаимодействовать с машиной или человеком через средство ввода-вывода для исключения необходимости имитации машиной внешнего вида или голоса человека. Задача как машины, так и человека состоит в том, чтобы заставить наблюдателя считать себя человеком.

Тест Тьюринга является односторонним. Машина, успешно проходящая тест, определенно должна считаться разумной, даже если она не обладает знаниями о людях, достаточными, чтобы их имитировать.

Книга Дэниела Деннета «Brainchildren» содержит прекрасное обсуждение теста Тьюринга и его различные части, которые были реализованы успешно, т. е. с ограничениями на знание наблюдателем об ИИ и предмете обсуждения. Оказывается, некоторых людей довольно легко убедить в том, что достаточно примитивная программа является разумной.

Является ли целью ИИ достижение человеческого уровня интеллекта?

Да. Конечной целью является создание компьютерных программ, которые могут решать проблемы и достигать целей так же, так и человек. Однако ученые, проводящие исследования в узких областях, ставят гораздо менее амбициозные цели.

Насколько далек искусственный интеллект от достижения человеческого уровня? Когда это произойдет?

Интеллект человеческого уровня может быть достигнут путем написания большого количества программ, и сбора обширных баз знаний о фактах на языках, которые сегодня используются для выражения знаний. Тем не менее, большинство исследователей ИИ считает, что необходимы новые фундаментальные идеи. Поэтому невозможно предсказать, когда будет создан интеллект человеческого уровня.

Является ли компьютер машиной, которая может стать интеллектуальной?

Компьютеры могут быть запрограммированы для имитации любого типа машины.

Скорость компьютеров позволяет им обладать интеллектом?

Некоторые люди думают, что требуются как более быстрые компьютеры, так и новые идеи. Компьютеры и 30 лет назад были достаточно быстрыми. Если бы мы только знали, как их программировать.

Что насчет создания «детской машины», которая могла бы улучшиться путем чтения и обучения на собственном опыте?

Эта идея неоднократно предлагалась с 1940-х годов. В конце концов, она будет реализована. Тем не менее, программы ИИ еще не достигли уровня, позволяющего узнать многое из того, чему ребенок учится в ходе жизнедеятельности. Существующие программы недостаточно хорошо понимают язык, чтобы многому научиться посредством чтения.

Являются ли теория вычислимости и вычислительная сложность ключами к ИИ?

Нет. Эти теории актуальны, но не затрагивают фундаментальные проблемы ИИ.

В 1930-х годах математические логики Курт Гёдель и Алан Тьюринг установили, что не существует алгоритмов, которые гарантировали бы решение всех задач в некоторых важных математических областях. Например, ответы на вопросы в духе: «является ли предложение логики первого порядка теоремой» или «имеет ли полиномиальное уравнение в одних переменных целочисленные решения в других». Так как люди способны решать задачи такого рода, данный факт было предложен в качестве аргумента в пользу того, что компьютеры по своей сути неспособны делать то, что делают люди. Об этом говорит и Роджер Пенроуз. Однако люди не могут гарантировать решения произвольных задач в этих областях.

В 1960-х годах ученые-программисты, в числе которых были Стив Кук и Ричард Карп, разработали теорию областей NP-полных задач. Задачи в данных областях разрешимы, но, по-видимому, их решение требует времени, растущего экспоненциально с размерностью задачи. Простейшим примером области NP-полной задачи служит вопрос: какие утверждения логики высказываний являются выполнимыми? Люди часто решают проблемы в области NP-полных задач в разы быстрее, чем это гарантируется основными алгоритмами, но не могут решать их быстро в общем случае.

Для ИИ важно, чтобы при решении задач алгоритмы были такими же эффективными, как и человеческий разум . Определение подобластей, в которых существуют хорошие алгоритмы, является важным, но многие программы, решающие задачи ИИ, не имеют отношения к легко идентифицируемым подобластям.

Теория сложности общих классов задач называется вычислительной сложностью. До сих пор эта теория не взаимодействовала с ИИ настолько, насколько можно было надеяться. Успех в решении проблем людьми и программами ИИ, по-видимому, зависит от свойств задач и методов решения задач, которые ни исследователи сложности, ни сообщество ИИ не могут определить точно.

Также актуальной является теория алгоритмической сложности, разработанная независимо друг от друга Соломоновым, Колмогоровым и Чайтиным . Она определяет сложность символьного объекта как длину наиболее короткой программы, которая сможет его сгенерировать. Доказательство того, что программа-кандидат является самой короткой или близкой к таковой, является неразрешимой задачей, но представление объектов генерирующими их короткими программами иногда может прояснять ситуацию, даже если вы не можете доказать, что ваша программа является самой короткой.

Искусственный интеллект

Искусственный интеллект - раздел информатики, изучающий возможность обеспечения разумных рассуждений и действий с помощью вычислительных систем и иных искусственных устройств. При этом в большинстве случаев заранее неизвестен алгоритм решения задачи.

Точного определения этой науки не существует, так как в философии не решён вопрос о природе и статусе человеческого интеллекта. Нет и точного критерия достижения компьютерами «разумности», хотя на заре искусственного интеллекта был предложен ряд гипотез, например, тест Тьюринга или гипотеза Ньюэлла - Саймона. На данный момент есть множество подходов как к пониманию задачи ИИ, так и созданию интеллектуальных систем.

Так, одна из классификаций выделяет два подхода к разработке ИИ:

нисходящий, семиотический - создание символьных систем, моделирующих высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.;

восходящий, биологический - изучение нейронных сетей и эволюционные вычисления, моделирующих интеллектуальное поведение на основе более мелких «неинтеллектуальных» элементов.

Эта наука связана с психологией, нейрофизиологией, трансгуманизмом и другими. Как и все компьютерные науки, она использует математический аппарат. Особое значение для неё имеют философия и робототехника.

Искусственный интеллект - очень молодая область исследований, старт которой был дан в 1956 году. Её исторический путь напоминает синусоиду, каждый «взлёт» которой инициировался какой-либо новой идеей. В настоящий момент её развитие находится на «спаде», уступая место применению уже достигнутых результатов в других областях науки, промышленности, бизнесе и даже повседневной жизни.

Подходы к изучению

Существуют различные подходы к построению систем ИИ. На данный момент можно выделить 4 достаточно различных подхода:

1. Логический подход. Основой для логического подхода служит Булева алгебра. Каждый программист знаком с нею и с логическими операторами с тех пор, когда он осваивал оператор IF. Свое дальнейшее развитие Булева алгебра получила в виде исчисления предикатов - в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, правила логического вывода как отношения между ними. Кроме того, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели (такая система известна как экспертные системы). Мощность такой системы определяется возможностями генератора целей и машиной доказательства теорем. Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечеткая логика. Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме да/нет (1/0) еще и промежуточные значения - не знаю (0.5), пациент скорее жив, чем мертв (0.75), пациент скорее мертв, чем жив (0.25). Данный подход больше похож на мышление человека, поскольку он на вопросы редко отвечает только да или нет.

2. Под структурным подходом мы подразумеваем здесь попытки построения ИИ путем моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Френка Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон. Позднее возникли и другие модели, которые большинству известны под термином нейронные сети (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети. В более широком смысле такой подход известен как Коннективизм.

3. Эволюционный подход. При построении систем ИИ по данному подходу основное внимание уделяется построению начальной модели, и правилам, по которым она может изменяться (эволюционировать). Причем модель может быть составлена по самым различным методам, это может быть и НС и набор логических правил и любая другая модель. После этого мы включаем компьютер и он, на основании проверки моделей отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели. Среди эволюционных алгоритмов классическим считается генетический алгоритм

4. Имитационный подход. Данный подход является классическим для кибернетики с одним из ее базовых понятий черный ящик. Объект, поведение которого имитируется, как раз и представляет собой «черный ящик». Нам не важно, что у него и у модели внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же. Таким образом здесь моделируется другое свойство человека - способность копировать то, что делают другие, не вдаваясь в подробности, зачем это нужно. Зачастую эта способность экономит ему массу времени, особенно в начале его жизни.

В рамках гибридных интеллектуальных систем пытаются объединить эти направления. Экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения.

Многообещающий новый подход, называемый усиление интеллекта, рассматривает достижение ИИ в процессе эволюционной разработки как побочный эффект усиления человеческого интеллекта технологиями.

Направления исследований

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений. Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, т. е. переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем, принятие решений и теория игр, планирование и диспетчеризация, прогнозирование.

Немаловажным направлением является обработка естественного языка, в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В частности, здесь ещё не решена проблема машинного перевода текстов с одного языка на другой. В современном мире большую роль играет разработка методов информационного поиска. По своей природе, оригинальный тест Тьюринга связан с этим направлением.

Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний, объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ. Здесь также нельзя не отметить две важные подобласти. Первая из них - машинное обучение - касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Второе связано с созданием экспертных систем - программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Большие и интересные достижения имеются в области моделирования биологических систем. Строго говоря, сюда можно отнести несколько независимых направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как разпознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы - агента, взаимодействующего с внешней средой, называется агентным подходом. А если должным образом заставить массу «не очень интеллектуальных» агентов взаимодействовать вместе, то можно получить «муравьиный» интеллект.

Задачи распознавание образов уже частично решаются в рамках других направлений. Сюда относятся распознавание символов, рукописного текста, речи, анализ текстов. Особо стоит упомянуть компьютерное зрение, которое связано с машинным обучением и робототехникой.

Вообще, робототехника и искусственный интеллект часто ассоциируется друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов, можно считать ещё одним направлением ИИ.

Особняком держится машинное творчество, в связи с тем, что природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки, литературных произведений (часто - стихов или сказок), художественное творчество.

Наконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программирование интеллекта в компьютерных играх, нелинейное управление, интеллектуальные системы безопасности.

Можно заметить, что многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ.

В начале XVII века Рене Декарт предположил, что животное - некий сложный механизм, тем самым сформулировав механистическую теорию. В 1623 г. Вильгельм Шикард построил первую механическую цифровую вычислительную машину, за которой последовали машины Блеза Паскаля (1643) и Лейбница (1671). Лейбниц также был первым, кто описал современную двоичную систему счисления, хотя до него этой системой периодически увлекались многие великие ученые. В XIX веке Чарльз Бэббидж и Ада Лавлейс работали над программируемой механической вычислительной машиной.

В 1910-1913 гг. Бертран Рассел и А. Н. Уайтхэд опубликовали работу «Принципы математики», которая произвела революцию в формальной логике. В 1941 Конрад Цузе построил первый работающий программно-контролируемый компьютер. Уоррен Маккалок и Валтер Питтс в 1943 опубликовали A Logical Calculus of the Ideas Immanent in Nervous Activity, который заложил основы нейронных сетей.

Современное положение дел

В настоящий момент (2008) в создании искусственного интеллекта (в первоначальном смысле этого слова, экспертные системы и шахматные программы сюда не относятся) наблюдается дефицит идей. Практически все подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа так и не подошла.

Некоторые из самых впечатляющих гражданских ИИ систем:

Deep Blue - победил чемпиона мира по шахматам. (Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам и система не была признана Каспаровым, хотя оригинальные компактные шахматные программы неотъемлемый элемент шахматного творчества. Затем линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain. Данная история - пример запутанных и засекреченных отношений ИИ, бизнеса, и национальных стратегических задач.)

Mycin - одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно как и доктора.

20q - проект, основанный на идеях ИИ, по мотивам классической игры «20 вопросов». Стал очень популярен после появления в интернете на сайте 20q.net.

Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.

Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.

Применение ИИ

Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика) при игре на бирже и управлении собственностью. В августе 2001 года роботы выиграли у людей в импровизированном соревновании по трейдингу (BBC News, 2001). Методы распознавания образов, (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Разработчики компьютерных игр вынуждены применять ИИ той или иной степени проработанности. Стандартными задачами ИИ в играх являются нахождение пути в двухмерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.

Перспективы ИИ

Просматриваются два направления развития ИИ:

первое заключается в решении проблем связанных с приближением специализированных систем ИИ к возможностям человека и их интеграции, которая реализована природой человека.

второе заключается в создании Искусственного Разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества.

Связь с другими науками

Искусственный интеллект тесно связан с трансгуманизмом. А вместе с нейрофизиологией и когнитивной психологией он образует более общую науку, называемую когнитологией. Отдельную роль в искусственном интеллекте играет философия.

Философские вопросы

Наука «о создании искусственного разума» не могла не привлечь внимание философов. С появлением первых интеллектуальных систем были затронуты фундаментальные вопросы о человеке и знании, а отчасти о мироустройстве. С одной стороны, они неразрывно связаны с этой наукой, а с другой - привносят в неё некоторый хаос. Среди исследователей ИИ до сих пор не существует какой-либо доминирующей точки зрения на критерии интеллектуальности, систематизацию решаемых целей и задач, нет даже строгого определения науки.

Может ли машина мыслить?

Наиболее горячие споры в философии искусственного интеллекта вызывает вопрос возможности мышления творения человеческих рук. Вопрос «Может ли машина мыслить?», который подтолкнул исследователей к созданию науки о моделировании человеческого разума, был поставлен Аланом Тьюрингом в 1950 году. Две основных точки зрения на этот вопрос носят названия гипотез сильного и слабого искусственного интеллекта.

Термин «сильный искусственный интеллект» ввел Джон Сёрль, его же словами подход и характеризуется:

«Более того, такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум - это разум» .

Напротив, сторонники слабого ИИ предпочитают рассматривать программы лишь как инструмент, позволяющий решать те или иные задачи, которые не требуют полного спектра человеческих познавательных способностей.

В своем мысленном эксперименте «Китайская комната», Джон Сёрль показывает, что прохождение теста Тьюринга не является критерием наличия у машины подлинного процесса мышления.

Мышление есть процесс обработки находящейся в памяти информации: анализ, синтез и самопрограмированние.

Аналогичную позицию занимает и Роджер Пенроуз, который в своей книге «Новый ум короля» аргументирует невозможность получения процесса мышления на основе формальных систем.

Существуют разные точки зрения на этот вопрос. Аналитический подход предполагает анализ высшей нервной деятельности человека до низшего, неделимого уровня (функция высшей нервной деятельности, элементарная реакция на внешние раздражители (стимулы), раздражение синапсов совокупности связанных функцией нейронов) и последующее воспроизведение этих функций.

Некоторые специалисты за интеллект принимают способность рационального, мотивированного выбора, в условиях недостатка информации. То есть интелектуальной просто считается та программа деятельности (не обязательно реализованная на современных ЭВМ), которая сможет выбрать из определенного множества альтернатив, например, куда идти в случае «налево пойдёшь …», «направо пойдёшь …», «прямо пойдёшь…»

Наука о знании

Также, с проблемами искусственного интеллекта тесно связана эпистемология - наука о знании в рамках философии. Философы, занимающиеся данной проблематикой, решают вопросы, схожие с теми, которые решаются инженерами ИИ о том, как лучше представлять и использовать знания и информацию.

Отношение к ИИ в обществе

ИИ и религия

Среди последователей авраамических религий существует несколько точек зрения на возможность создания ИИ на основе структурного подхода.

По одной из них мозг, работу которого пытаются имитировать системы, по их мнению, не участвует в процессе мышления, не является источником сознания и какой-либо другой умственной деятельности. Создание ИИ на основе структурного подхода невозможно.

В соответствии с другой точкой зрения, мозг участвует в процессе мышления, но в виде "передатчика" информации от души. Мозг ответственен за такие "простые" функции, как безусловные рефлексы, реакция на боль и тп. Создание ИИ на основе структурного подхода возможно, если конструируемая система сможет выполнять "передаточные" функции.

Обе позиции не соответствуют данным современной науки, т.к. понятие душа не рассматривается современной наукой в качестве научной категории.

По мнению многих буддистов ИИ возможен. Так, духовный лидер далай-лама XIV не исключает возможности существования сознания на компьютерной основе.

Раэлиты активно поддерживают разработки в области искусственного интеллекта.

ИИ и научная фантастика

В научно-фантастической литературе ИИ чаще всего изображается как сила, которая пытается свергнуть власть человека (Омниус, HAL 9000, Скайнет, Colossus , Матрица и репликант) или обслуживающий гуманоид (C-3PO, Data, KITT и KARR, Двухсотлетний человек). Неизбежность доминирования над миром ИИ, вышедшего из под контроля, оспаривается такими фантастами как Айзек Азимов и Kevin Warwick.

Любопытное видение будущего представлено в романе «Выбор по Тьюрингу» писателя-фантаста Гарри Гаррисона и ученого Марвина Мински. Авторы рассуждают на тему утраты человечности у человека, в мозг которого была вживлена ЭВМ, и приобретения человечности машиной с ИИ, в память которой была скопирована информация из головного мозга человека.

Некоторые научные фантасты, например Вернор Виндж, также размышляли над последствиями появления ИИ, которое, по-видимому, вызовет резкие драматические изменения в обществе. Такой период называют технологической сингулярностью.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png